关闭

(扩展)欧几里德算法

234人阅读 评论(0) 收藏 举报
分类:

欧几里德是用来求最大公约数的,可以把它看成是状态转移,

对任意两个数a,b(a>b),d=gcd(a,b),如果b不为零,那么gcd(a,b)=gcd(b,a%b)

        证明: 令 r=a%b,即存在k,使得 a=b*k+r,那么r=a-b*k;显然r>=0,  r%d=((a%d)-(b*k)%d)%d,因为a%d=b%d=0,所以r%d=0;

因此求gcd(a,b)可以转移到求gcd(b,a%b),那么这就是个递归过程了,那什么时候递归结束呢,想一下,a,b不能为零,则可以把当b为零,作为递归的结束(当然还可以以其它结束条件),这就是求最大公约数的方法可以以其它结束条件),这就是求最大公约数的方法


int gcd(int a,int b)
{
    if(b==0)return a;
 
    else return gcd(b,a%b);
 }

是不是很简单呀.

理解了上面,那么扩展欧几里得就能很容易理解了,对任意a,b(a>b),我们列出这样一个式子: a*x+b*y=gcd(a,b);

不要觉得扩展欧几里得很牛逼,它就是一个算x,y的一个方法,只是在上面gcd中多了处理x,y的步骤

我们这样来想:

已知当前的一个状态:a1  b1  x1  y1,    a1*x1+b1*y1=gcd(a1,b1),注意这里的a1,b1是求gcd(a,b)中的一个状态,

假设 (a1,b1)是由(a0,b0)转移过去的

那么:   a1=b0 ;     b1=a0%b0=a0-k*b0 (k=int(a0/b0));gcd(a0,b0)=gcd(a1,b1);

代入a1*x1+b1*y1=gcd(a1,b1),变化成:b0*x1+(a0-k*b0)*y1=gcd(a1,b1)=gcd(a0,b0);

a0*y1+b0*(x1-k*y1)=gcd(a0,b0);

这样可以得到: x0=y1;  y0=x1-k*y1;(理解这个过程了么,由当前状态可以算出上一状态的x,y,即当前状态可以由它的下一个状态的x,y得到)

int exGcd(int a,int b,int &x,int &y)
{
	if(b==0)
	{
		x=1;
		y=0;
		return a;// 此时a是最开始(a,b)的最大公约数,那么  gcd(a,b)*1+ 0*0=gcd(a,b),肯定对的,在这里,我认为,y可以为任何值都对
	}
	
	int d=exGcd(b,a%b,y,x);
	y-=a/b*x;
	return d;//返回最大公约数
}

需要注意一点的就是方程得到的解不止一个是一个通解!


关于求解二元一次不定方程ax+by=c

    首先,如果c不是gcd(a,b)的倍数,方程显然无解。

扩展欧几里得求解的是ax+by=gcd(a,b)=1的可行解,但是题目中并没有说ca,b互质之类的条件,所以需要在开始时两边同时除以gcd(a,b)

d=gcd(a,b)

a'=a/d,b'=b/d,c'=c/d,

则下面需要求解a'x+b'y=c'的整数解,而gcd(a',b')=1

则我们只需求a'x+b'y=1的可行解

直接使用扩展欧几里得,得到(x',y'),则最终解为x'*c',y'*c'设为(x0,y0)

 

现在得到了一组可行解,但是如何得到通解呢?

(x0,y0)代入ax+by=c,则有

a*(x0)+b*(y0)=c

通过拆添项,可有:

a*(x0+1*b)+b*(y0-1*a)=c

a*(x0+2*b)+b*(y0-2*a)=c

a*(x0+3*b)+b*(y0-3*a)=c

……

a*(x0+k*b)+b*(y0-k*a)=c  (kZ)

至此,我们得到了通解的方程

x=x0+k*b

y=y0-k*a  (kZ)

这样,所有满足ax+by=c的可行解都可求出。



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场