关闭

A/B(扩展欧几里得算法)

204人阅读 评论(0) 收藏 举报
分类:

A/B

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2814    Accepted Submission(s): 2082


Problem Description
要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1)。
 

Input
数据的第一行是一个T,表示有T组数据。
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
 

Output
对应每组数据输出(A/B)%9973。
 

Sample Input
2 1000 53 87 123456789
 

Sample Output
7922 6060
 

Author
xhd
 

Source
 


#include<cstdio>
#include<iostream>
#define N 9973
using namespace std;
/*
设(A/B)%9973=k;A=9973*x*B+B*k
又因为 A%9973=n所以B*k%9973=n
B*k=9973*y+n;
gcd(B,9973)=1;
B*k/n-9973*y/n=1
*/
int exGcd(int a,int b,int &x,int &y)
{
	if(b==0)
	{
		x=1;
		y=0;
		return a;// 此时a是最开始(a,b)的最大公约数,那么  gcd(a,b)*1+ 0*0=gcd(a,b),肯定对的,在这里,我认为,y可以为任何值都对
	}

	int d=exGcd(b,a%b,y,x);
	y-=a/b*x;
	return d;//返回最大公约数
}
int main()
{
    int x,y,t,n,m;
    cin>>t;
    while(t--)
    {
        cin>>n>>m;
        exGcd(m,N,x,y);
        //cout<<x<<endl;这里得到的x值是负数!
        //我们由公式x=x0+k*b得到x的任意一个解,非负数就行了!
        x=(x%N+N)%N;//这里得到的就是
        cout<<(x*n)%N<<endl;//算出来就可以了!
    }
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场