概率论与数理统计学习总结

原创 2015年07月08日 11:35:08

一.课程网址及成绩记录

1、网址:http://www.icourse163.org/course/zju-232005#/info

2、评分标准:三个单元测验分别为第12章,第345章,第67章,各占15%,论坛讨论占5%,期末考试占50%,按百分制计分,60分至84分为合格,85分至100分为优秀。

3、需要说明一下的是单元测试每一次总分为30分,期末考试总分是50分。因为是76号课程才结束,所以现在还不可以申请证书。现在只能贴出每一次的小练习的分数和期末考试的分数。

115讲单元测验



1637讲单元测验



3853讲单元测验





《概率论与数理统计》期末考试


最终的成绩:(28/30+28/30+12/30)*100*0.15+(40/50)*100*0.5+5=79


一.选择概率论与数理统计的原因

其实一开始当老师说可以在MOOC上选择自己喜欢的课程的时候,我是有点惊讶的。因为从小到大给我的观念就是在学校上什么课程都是固定而且被动的(选修课除外),而丁又专老师的这门课让我有了新的认识。自己仔细想想也对,虽然说在课堂上学习的内容与符合专业的大方向,目的性很强。但是它也有它的局限性。主要包括:第一点,时间的局限性,只能在学校安排的时间学习;第二点,空间的局限性,学习的地方只限于教室等等。而MOOC就是为了解决这些问题应运而生的。它最大的特点就是无论何时何地,只要你想,都能够学。

至于我为什么要学概率论,主要是一来这一两年来学理论的东西太多了,很多东西要背,脑子都快有点转不动了,所以就想找一个课程,纯粹只是想做一些题锻炼锻炼思维来中和一下,免得大脑打结;二来我想试试自己的控制能力,因为MOOC是没有人监督也没有人逼你去学,完全是自愿的。那么这样一来你怎么学,学得认不认真完全是靠自己的自觉性了,所以这也是自己给自己的一个考验吧。基于上述两个理由,我选择了这门课。

 

二.课程的学习收获

一个课程下来我基本上掌握了

1.概率论部分:

(1)常见分布列,分布函数:离散型--连续型 一维--二维; 离散:两点分布,二次分布,泊松分布,几何分布;连续:均匀分布,指数分布,正态分布。

(2)基本运算概念:概率密度,数学期望,方差,协方差,相关系数。 

2.数理统计部分:

(1)样本基本概念: χ2分布,t分布,F分布,正态总体的样本均值,方差,k阶原点矩,k阶中心矩。

(2)参数估计:点估计,矩估计,最大似然估计法,无偏性,有效性,区间等。

概率论前几周的课程都是以简单的概率计算为主,因为在高中已经接触过,所以学起来比较轻松。简单的概率计算基本上都可以由几个基本公式(比如:全概率公式,贝叶斯公式,条件概率公式,乘法公式)得到。接下来接触到了几个重要的函数,分布函数,密度函数等,研究的对象也从原先的离散型随机变量扩展为连续性随机变量。我觉得相对来说比较抽象,需要搞清楚分布律、概率密度、分布函数的定义、性质、用途和关系,花的时间也比前面多了,前面的视频可以有选择性的跳过,到这里就时不时就需要停顿一下,开始做一些必要的笔记,好好理解一番。再后来是数理统计部分,这部分内容比较难,偏记忆的知识点较多,很容易混淆,好比如估计理论,我一开始就经常把总体参数和样本参数混淆。还有就是结论多,计算繁琐,好像通过样本来估计某个总体参数所在的区间,矩估计和最大似然估计量这类的计算要一大堆,导致我现在还没有好好的摸透它。

 

四.感受与体会

在学习中,遇到很困扰的问题就是很多概念性的定义或者知识看不懂或容易忘记。后来我想了一个办法就是老师讲了一遍之后,如果还是不明白的话就再看一篇,然后自己在脑海在试着勾勒出那个概念或知识的来龙去脉,这样理解性记忆减轻了不少负担。

概率统计并不是给你一个数学题目让你算出一个相应的结果。它是真正把实际为题转化为数学问题的学问, 因为它解决的并不是单纯的数学问题,而是给你一个命题让你去设想构思,进而把想法应用到解决实际问题上,很贴近实际。比如抽奖先后中奖概率都一样,扔硬币为什么正反面的概率都是二分之一等。一些问题还会让我们更理性的对待实际中的一些问题,比如赌博赢的概率很小,彩票中奖概率也是微乎其微,所以不能迷恋那些,不能期望用投机取巧来赚取钱财等等。

概率论与数理统计入门容易,但是要理解透彻比较困难。有句话说得好,基础学科学时觉无用,用时方恨少。对于此,我还有很长一段路要走。



概率论学习小结(road map)

在最近学习模式识别和机器学习时经常会用到概率论的知识,索性重新复习一遍概率论的知识。学习概率论最重要的一点不是公式的记忆,而是对公式背后的含义的理解。(其实学习任何一门知识都是如此,但是相比高数等的抽...
  • angelazy
  • angelazy
  • 2015年01月12日 20:59
  • 4169

概率论与数理统计的学习(归纳+总结)

第一章    随机事件与概率 第二章    随机变量及其分布 第三章    多维随机变量及其分布 第四章    随机变量的数字特征 第五章    大数定律和中心极限定理 第六章    数理统计的...
  • huatian5
  • huatian5
  • 2016年10月10日 20:19
  • 1107

概率与数理统计学习总结二

老师课堂总结,禁止转载 试验: 我们将对自然现象的一次观察或进行一次科学试验 随机试验 可在相同的条件下重复试验 每次试验的结果不止一个,且能事先明确所有可能的结果 样本空间 随机试验E的所有可...
  • qq_30138291
  • qq_30138291
  • 2017年07月25日 16:17
  • 94

总结人工智能需要的数学知识

矩阵必不可少,线性代数是基础–参考一些中文教材入门,然后看看Gilbert Strang的Introduction to Linear Algebra,矩阵计算 更复杂的是求线性方程组–数值计算 微...
  • yinlili2010
  • yinlili2010
  • 2015年02月26日 15:12
  • 4022

概率论与数理统计重要知识体系

概率论与数理统计 复习思路: 1.独立随机事件的概率(目标事件可能情况/总的可能情况,排列组合)(贝叶斯公式及全概率公式) 2.典型的离散分布(二项分布,几何分布,泊松分布),概率公式及其期望方...
  • cdjchuangzao
  • cdjchuangzao
  • 2016年04月09日 10:57
  • 922

概率论与数理统计(陈希孺)学习笔记

由于平常学习自然语言处理的很多算法都来源于概率论和数理统计,因此找来陈老先生的著作温习巩固一下。具体内容请参考原著,本文仅作个人学习记录。 1.基本概念 主观概率:可以理解为一个人针对某一事件的一种心...
  • u010161379
  • u010161379
  • 2016年02月29日 16:48
  • 5026

[概率论与数理统计] 常用定义与公式

前言前言前言前言
  • oscar999
  • oscar999
  • 2016年06月21日 09:06
  • 2176

数据挖掘中所需的概率论与数理统计知识

数据挖掘中所需的概率论与数理统计知识、上 分类: 30.Machine L&Data Mining2012-12-17 19:24 22890人阅读 评论(72) 收藏 举报 ...
  • pi9nc
  • pi9nc
  • 2013年03月19日 08:45
  • 5464

概率论与数理统计复习

事件的概率 概率是什么 主观概率 试验与事件 古典概率 概率的统计定义 概率的公理化定义 古典概率计算 排列组合的几个简单公式 案例详见书 事件的运算条件概率与独立性 事件的蕴含包含及相等 略 事件的...
  • guanhang89
  • guanhang89
  • 2016年02月15日 19:36
  • 505

概率论学习小结(road map)

在最近学习模式识别和机器学习时经常会用到概率论的知识,索性重新复习一遍概率论的知识。学习概率论最重要的一点不是公式的记忆,而是对公式背后的含义的理解。(其实学习任何一门知识都是如此,但是相比高数等的抽...
  • angelazy
  • angelazy
  • 2015年01月12日 20:59
  • 4169
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:概率论与数理统计学习总结
举报原因:
原因补充:

(最多只允许输入30个字)