关闭
当前搜索:

神经网络

https://www.zhihu.com/question/22553761 上面两个讲得太好了。 全连接 前馈 Learning or training process? 所要考虑的问题: 1.层数 2.激活函数 3.损失函数 要做的就是根据loss调整参数。 调参数: 超参数:需要人工调整的参数,上课讲了调整连接权重 介绍了误差逆传播算法(erro...
阅读(14) 评论(0)

集成学习(ensemble learning)

“Ensemble methods” is a machine learning paradigwhere multiple(homogenous/heterogeneous)individual leaners are generated and combined forthe same problem. 集成学习通过构建并结合多个学习器来完成学习任务,有时也被成为多分类器系统。 一、介绍 ...
阅读(29) 评论(0)

判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。(回溯法)

题目描述: 请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格子。如果一条路径经过了矩阵中的某一个格子,则该路径不能再进入该格子。例如 a b c e s f c s a d e e 矩阵中包含一条字符串"bcced"的路径,但是矩阵中不包含"abcb"路径,因为字符串的第一个字符b占...
阅读(44) 评论(0)

堆以及堆排序

堆以及堆以及优先队列 调整每个节点的算法: 如果要建立大顶堆,则需遵循每个父亲结点的值都要大于左右孩子的值 建立堆的算法: 自底向上建立,调整每个非叶子节点,叶子节点无需再调整 利用结论,完全二叉树中(n/2+1,...,n)为叶子节点...
阅读(40) 评论(0)

参数估计(个人通俗理解)

问题背景: 我们知道了总体的分布,但不知道分布的参数,因此我们就要对未知的参数做出估计。 两个类型的估计: 1.点估计 2.区间估计 1.点估计 包括矩估计和极大似然估计 1)矩估计: 用样本矩去估计总体矩 这里就可以用样本一阶矩(均值)估计整体一阶矩(均值),样本二阶中心矩估计(方差)整体二阶中心距(方差) 2)极大似然估计: 理解: 利用已知的样本结果,反推...
阅读(56) 评论(0)

假设检验(通俗个人理解)

假设检验和区间估计正好相反(是主动的估计) 根据样本的信息检验关于总体的某个...
阅读(54) 评论(0)

git及github使用(一)

第1步:创建SSH Key。 $ ssh-keygen -t rsa -C "你的邮箱" 一路回车,这样设置的无密码的 在用户主目录里找到.ssh目录,里面有id_rsa和id_rsa.pub两个文件,这两个就是SSH Key的秘钥对,id_rsa是私钥,不能泄露出去,id_rsa.pub是公钥,可以放心地告诉任何人。 第2步:登陆GitHub,打开“Account setting...
阅读(44) 评论(0)

K-NN(k-nearest neighbor)

knn是一种常见的监督学习方法。 工作机制:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本,然后基于这个k个“邻居”的信息进行预测。 懒惰学习,训练阶段仅仅是把样本保存起来,待收到样本后再进行处理。 1. K-NN算法简介  K-NN算法 ( K Nearest Neighbor, K近邻算法 ), 是机器学习中的一个经典算法, 比较简单且容易理解. K...
阅读(104) 评论(0)

单纯形法

基变量:系数矩阵中线性无关的向量 可由非基变量表示 then 令非基变量等于0,可求得基变量的值 上面的几何意义也就是通过变基来得到可行域每个顶点 判断最优: 目标函数也可以由非基变量表示,系数全部小于0时,达到最优解。 因为: 意思就是:此时的非基变量全部为0,是这些变量的最小值,我们可以通过增大这些变量的值,来增大目标函数值。...
阅读(59) 评论(0)

决策树(decision tree )

三个问题: 怎样选择根节点怎样选择后继节点什么时候停止 (一颗决策树=》一个分类准则=》一个模型) 基本的算法: 递归共有三种情况返回: 当前节点包含的样本全属于同一类别,无需在划分了当前属性集为空,或者所有样本在所有属性上取值相同,无法再划分当前节点包含的样本集为空,不能划分。 针对第二种情况,将其类别设定为当前集合所含样本最多的类别(后验分布) 第...
阅读(52) 评论(0)

贝叶斯分类器

首先: 贝叶斯定理 贝叶斯定理是根据条件概率得到的。 在事件B发生前,我们需要对事件A发生的费率有一个粗略的判断,也即事件A的先验概率P(A); 在事件B发生后,我们可以对P(A)进行一个修正,变成后验概率 P(B|A)。 先验概率与后验概率 事情还没有发生,要求这件事情发生的可能性的大小,是先验概率. 事情已经发生,要求这件事情发生的...
阅读(70) 评论(0)

整数中1出现的次数

题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。 这是剑指offer上的一道题。 我一开始的思路,就是看个位数中含有1的个数,十位数中含有...
阅读(42) 评论(0)

MCCP问题( Minimum color cut problem)

New algorithms for the Minimum Coloring Cut Problem About MMCP:  找一个连通图的最小的颜色集合,使该图断开。 Example:   是一个NP-hard问题 Heuristic algorithm Apply: 网络物理层和网络层 color(label):底层的通信,edges:应用层之间的通信 理解: 1...
阅读(35) 评论(0)

Django使用mysql

在生成迁移文件时报错: django.db.utils.OperationalError: (1698, "Access denied for user 'root'@'loc 在Ubuntu终端中是可以登进去的:sudo MySQL -u root -p 但在pycham中生成迁移文件时报错,加上sudo也不行 后来在pycham的终端中sudo mysql -u root -p登完...
阅读(43) 评论(0)

模型评估与选择(Model Evaluation and Selection)

我们该选择哪一个学习算法、使用哪一种参数配置,这就是机器学习中的模型选择问题。理想的解决方案是对候选模型的泛化误差进行评估,然后选择泛化误差最小的那个模型。但我们无法直接获得泛化误差,训练误差又由于过拟合现象的存在不适合作为标准,如何进行模型评估与选择? basic terms 1.误差(训练误差和泛化误差)error(training error&generalization err...
阅读(45) 评论(0)

用了下itchat接口。

sudo pip3 install itchat 今天用了下itchat接口,从url=”https://lvyou.baidu.com/”上爬了数据,可以根据对方发的城市拼音比如qingdao自动回复这个城市的旅游信息。 有很多地方还没搞明白,但是程序照着数据分析那个公众号的一篇文章敲得,是可以运行了。具体的代码不到五十行:#Coding='utf-8' from time import ct...
阅读(73) 评论(0)

ubuntu下pycham的安装和使用

1.去pycham官网 https://www.jetbrains.com/pycharm/ 下载 2.把文件拖进ubuntu下,也可以直接在ubuntu搜pycham下载 3.打开终端ctr+aalt+t:输入sh ./pycharm.sh 之后就打开了...
阅读(126) 评论(0)

固定返回值的web服务器代码

# coding:utf-8 import socket from multiprocessing import Process HTML_ROOT_DIR = "" def handle_client(client_socket): """处理客户端请求""" # 获取客户端请求数据 request_data = client_socket.recv(1024)...
阅读(48) 评论(0)

有关http关于b/s模式的理解

客户端(浏览器)发送请求,有个请求头,请求头中包含这次所请求的信息,包括域名端口号等等,请求方式有getpost等等 get后面的/http/1.1这个就是所要访问的资源路径 服务器接收到这个请求,解析,传回数据,有个响应头,还有响应内容,可以是一个网页,浏览器分析并展示该网页。 200指的是不是连接是否建立,连接建立成功与否是传输层考虑的问题,在应用层,假设链接已经...
阅读(56) 评论(0)

myeclipse git和github使用

用的https的。。ssh的不好用啊老报错 github账号:tianqingwa 注册邮箱:tianqinghua95@163.com...
阅读(86) 评论(0)
24条 共2页1 2 下一页 尾页
    个人资料
    • 访问:3264次
    • 积分:259
    • 等级:
    • 排名:千里之外
    • 原创:23篇
    • 转载:1篇
    • 译文:0篇
    • 评论:1条
    最新评论