关闭

UVA 11426 GCD - Extreme (II)(神TM GCD大法,欧拉函数)

256人阅读 评论(0) 收藏 举报
分类:

Given the value of N, you will have to findthe value of G. The definition of G is given below:

ACM: <wbr>uva <wbr>11426 <wbr>- <wbr>GCD <wbr>- <wbr>Extreme <wbr>(II)

Here GCD(i,j)means the greatest common divisor ofinteger i andinteger j.

 

For those who have trouble understandingsummation notation, the meaning of G is given in the followingcode:

G=0;

for(i=1;i<N;i++)

for(j=i+1;j<=N;j++)

{

    G+=gcd(i,j);

}

 

 

Input

The input file contains at most 100 lines ofinputs. Each line contains an integer N(1<N<4000001)

 

Output

For each line of input produce one line ofoutput. This line contains the value of G for the corresponding N.The value of G will fit in a 64-bit signed integer.


 

SampleInput 

10

100

200000

0


Output for SampleInput

67

13015

143295493160


题意:求对于每个i<=N,求f(i)=GCD(1,i)+GCD(2,i)+......GCD(i-1,i)并求前N项和。


对于一个N,设GCD(a,N)=b;则有N=b*x,a=b*y,GCD(a/b,N/b)=1即GCD(x,y)=1;

又依题意得a<N,则Y<X,则满足GCD(a,N)=b且a<N的a的个数等于GCD(y,x)=1且y<x的y的个数,即eluer(x)(小于x且与x互质的数的个数)

因此打个欧拉表再枚举N的约数b即可


代码:

#include<cstdio>
#include<cstring>
#include<string>
#include<iostream>
#include<sstream>
#include<algorithm>
#include<utility>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<math.h>
#include<iterator>
#include<stack>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
const double eps=1e-8,PI=3.1415926538;
const LL MOD=1000000000+7;
const LL MAXN=4000007;

LL m[MAXN],phi[MAXN],p[MAXN],pt;

void make()
{
    phi[1]=1;
    LL N=MAXN;
    LL k;
    for(int i=2;i<N;i++)
    {
        if(!m[i])
            p[pt++]=m[i]=i,phi[i]=i-1;
        for(int j=0;j<pt&&(k=p[j]*i)<N;j++)
        {
            m[k]=p[j];
            if(m[i]==p[j])
            {
                phi[k]=phi[i]*p[j];
                break;
            }
            else
                phi[k]=phi[i]*(p[j]-1);
        }
    }
}




LL gcd(LL a,LL b)
{
    if(b==0)return a;
    else return gcd(b,a%b);
}



LL S[MAXN];
int main()
{
    make();
    phi[1]=phi[0]=0;
    memset(S,0,sizeof(S));
    LL z=sqrt(MAXN);
    for(int i=1;i<=z;i++)//枚举N的约数
    {
        for(int j=2;j*i<=MAXN-3;j++)//N=i*j
        {
            S[j*i]+=i*phi[j];
            if(z<j)S[j*i]+=j*phi[i];//z<span style="font-family:Courier New;"><j时,i*j的约数j枚举不到</span>
        }
    }
    LL N,G;
    while(scanf("%lld",&N)!=-1&&N!=0)
    {
        G=0;
        for(int i=2;i<=N;i++)
        {
            G+=S[i];
        }
        printf("%lld\n",G);
    }
    return 0;
}



0
0
查看评论

uva 11426 GCD - Extreme (II) (神奇的GCD)

https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2421 大意:给定正整数N,求出 for(i=1;i   ...
  • theArcticOcean
  • theArcticOcean
  • 2016-01-19 10:48
  • 819

UVA 11426 GCD - Extreme (II) (欧拉函数)

题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=70017#problem/O 假设a、b(a     假设和b互质的数有n个,也就是n对(?,b)(?和b互质),那么在i、j循环到?、b时结果...
  • u014665013
  • u014665013
  • 2016-05-16 13:28
  • 509

UVA 11428 GCD - Extreme (II)(G=∑ ∑GCD(i, j)(1<=i<N,i+1<=j<=N,欧拉函数)

题目链接: UVA 11428 GCD - Extreme (II) 题意: i<N j≤N 给定n求:G = ∑ ∑ GCD(i, j) (n <= 4000000) i=1 j=i+1分析: 令sum[n]为题式中答案。...
  • Ramay7
  • Ramay7
  • 2016-05-29 11:35
  • 374

UVA 11426 GCD - Extreme (II) (数论|欧拉函数)

题意:求sum(gcd(i,j),1 思路:首先可以看出可以递推求出ans[n],因为ans[n-1]+f(n),其中f(n)表示小于n的数与n的gcd之和 问题转化为了求f(n),因为小于n的数与n的gcd一定是n的因数, 所以f(n)可以表示为sum(i)*i,其中sum(i)表示所有和n...
  • u014664226
  • u014664226
  • 2015-08-18 22:24
  • 466

Uva 11426 - GCD - Extreme (II) 欧拉函数

链接:戳这里 Given the value of N, you will have to find the value of G. The definition of G is given below: ij≤N          ...
  • libin66
  • libin66
  • 2016-03-25 21:52
  • 269

[欧拉函数] uva 11426 GCD - Extreme (II)

题意: 求1~n之间两两gcd的和,gcd(a,b)和gcd(b,a)算一个。 思路: 设gcd(x,n)=i的x的个数为g(n,i),则g(n,i)=phi(n/i)。phi(x)为x的欧拉函数值。 注:这里x 所以采用打表的方法 ans[i]=ans[i-1]+g[i] g[i...
  • wdcjdtc
  • wdcjdtc
  • 2015-03-26 19:27
  • 429

UVA 11426 GCD Extreme (II) 欧拉函数

1)欧拉函数φ(n)为所有小于n的正整数与n的GCD和,φ(n)=n*(1-1/a1)*(1-1/a2)......(a1,a2...为n的约数) 2)若对于B有n个数与其互质,则循环到i*B则可为pe[i*B]增加pe[B]*i 3)最后值即求a[1]+a[2]+....+a[n] #inc...
  • trq1995
  • trq1995
  • 2015-05-03 16:41
  • 427

UVA 11426 GCD - Extreme (II)(欧拉函数)

题意:给出正整数n,求gcd(1,2)+gcd(1,3)+gcd(2,3)……+gcd(n-1,n),即求求sum( gcd(i,j) , 1 思路: 设f[n] = gcd(1,n)+gcd(2,n)+……+gcd(n-1,n) 所以要求的结果就是s[n]  =  f[1...
  • huatian5
  • huatian5
  • 2016-08-31 22:02
  • 463

GCD - Extreme (II) UVA - 11426 (欧拉函数)

题目链接/* 看了挺久的,才大致看懂了是什么意思; 要求给定数的gcd(i,j) (1<=i<=j<=n) 因为数据很大,故打表是个选择 对于给定的n, a(n) = gcd(1,n)+gcd(2,n) +......+gcd(n-1,n) ...
  • zhuanshunzhe
  • zhuanshunzhe
  • 2017-04-12 20:08
  • 61

uva 11426 - GCD - Extreme (II) 欧拉函数

题目:  https://uva.onlinejudge.org/external/114/11426.pdf #include #include #include #include #include #include #include #include #include ...
  • yskyskyer123
  • yskyskyer123
  • 2015-09-22 17:52
  • 232
    个人资料
    • 访问:6064次
    • 积分:549
    • 等级:
    • 排名:千里之外
    • 原创:50篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条