关闭

[BZOJ]1051: [HAOI2006]受欢迎的牛 强连通

标签: C++c语言强连通
232人阅读 评论(0) 收藏 举报
分类:

Description

  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。

Input

  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)

Output

  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3
1 2
2 1
2 3

Sample Output

1

HINT

100%的数据N<=10000,M<=50000


我比较喜欢做这种题目,题目又短,题意又简单,可做性比较高。言归正传,这道题目是一道强连通。
首先若A认为B受欢迎,我们就建一条A—>B的有向边。接着,我们对这个图进行强连通缩点,之后分情况讨论:
①整个图中的点都可以互相到达(只有一个强连通)
那么答案就是n,这个很好理解。
如果不满足上述的情况,那么要求出每一个新点的出度。
②只有一个出度为0的点
那么这个点中的所有点都能被所有其他牛受欢迎。为什么呢?若只有一个点A出度不为0,假设A-->B,那么假如B认为A受欢迎,那么这两个点一定会被缩为一个点,所以我们可以得到结论:有出度的点不满足答案的要求。
③有2个或以上的点出度为0
那么答案为0。这个很好理解,我就不写了。
下面放代码。
#include<cstdio>
#include<cstring>
const int Q=10005;
struct edge
{
	int y,next;
}a[50005];
struct tyb
{
	int x,y;
}b[50005];
int last[Q],len=0;
int n,m;
void ins(int x,int y)
{
	int t=++len;
	a[t].y=y;a[t].next=last[x];last[x]=t;
}
bool v[Q];
int dfn[Q],low[Q],sta[Q],top=0,id=0,belong[Q],tot[Q],cnt=0;
int Min(int x,int y) {return x<y?x:y;}
int chu[Q];
void dfs(int x)
{
	v[x]=true;sta[++top]=x;
	low[x]=dfn[x]=++id;
	for(int i=last[x];i!=-1;i=a[i].next)
	{
		int y=a[i].y;
		if(dfn[y]==-1)
		{
			dfs(y);
			low[x]=Min(low[x],low[y]);
		}
		else if(v[y]==true) low[x]=Min(low[x],dfn[y]);
	}
	if(low[x]==dfn[x])
	{
		cnt++;
		int i;
		do
		{
			i=sta[top--];
			belong[i]=cnt;
			tot[cnt]++;
			v[i]=false;
		}while(i!=x);
	}
}
int main()
{
	memset(tot,0,sizeof(tot));
	memset(chu,0,sizeof(chu));
	memset(v,false,sizeof(v));
	memset(dfn,-1,sizeof(dfn));
	memset(last,-1,sizeof(last));
	scanf("%d%d",&n,&m);
	for(int i=1;i<=m;i++)
	{
		scanf("%d%d",&b[i].x,&b[i].y);
		ins(b[i].x,b[i].y);
	}
	for(int i=1;i<=n;i++) if(dfn[i]==-1) dfs(i);
	if(cnt==1) printf("%d",n);
	else 
	{
		int ans=0;
		for(int i=1;i<=m;i++) 
		if(belong[b[i].x]!=belong[b[i].y]) chu[belong[b[i].x]]++;
		for(int i=1;i<=cnt;i++)
		if(chu[i]==0)
		{
			if(ans==0) ans=tot[i];
			else break;
		}
		printf("%d",ans);
	}
}


2
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13517次
    • 积分:2061
    • 等级:
    • 排名:第19780名
    • 原创:180篇
    • 转载:4篇
    • 译文:0篇
    • 评论:26条