[机器学习]机器学习笔记整理13-线性回归简单实现

原创 2017年04月11日 00:21:29

概念请参考:[机器学习]机器学习笔记整理12-线性回归概念理解

1. 简单线性回归模型举例:

汽车卖家做电视广告数量与卖出的汽车数量:
这里写图片描述

1.1 如何练处适合简单线性回归模型的最佳回归线?

这里写图片描述

1.2 计算

这里写图片描述

预测:

假设有一周广告数量为6,预测的汽车销售量是多少?
这里写图片描述

代码实现

x_given = 6

Y_hat = 5*6 + 10 = 40

1.3 Python实现:

import numpy as np

def fitSLR(x, y):
    n = len(x)
    dinominator = 0
    numerator = 0
    for i in range(0, n):
        numerator += (x[i] - np.mean(x))*(y[i] - np.mean(y))
        dinominator += (x[i] - np.mean(x))**2
    b1 = numerator/float(dinominator)
    b0 = np.mean(y)/float(np.mean(x))
    return b0, b1

def predict(x, b0, b1):
    return b0 + x*b1

x = [1, 3, 2, 1, 3]
y = [14, 24, 18, 17, 27]    


b0, b1 = fitSLR(x, y)

print "intercept:", b0, " slope:", b1

x_test = 6

y_test = predict(6, b0, b1)

print "y_test:", y_test
版权声明:本文为博主原创文章,未经博主允许不得转载。

简单线性回归(Simple Linear Regression)下

1、简单线性回归模型举例: 汽车卖家做电视广告数量与卖出的汽车数量: 如何训练适合简单线性回归模型的最佳回归线? 使sum of squares最小 计算 ...
  • zxllll8898
  • zxllll8898
  • 2016年12月04日 11:43
  • 253

scikit-learn学习之回归分析

本篇博客主要介绍了简单线性回归,多元线性回归和非线性回归,主要是结合Python和Scikit-learn机器学习库进行相应的分析 目录: 1、概念 2、简单线性回归(Simple Liner Reg...
  • Gamer_gyt
  • Gamer_gyt
  • 2016年04月24日 16:47
  • 12912

Coursera公开课笔记: 斯坦福大学机器学习第二课“单变量线性回归(Linear regression with one variable)”

Coursera公开课笔记: 斯坦福大学机器学习第二课“单变量线性回归(Linear regression with one variable)” 发表于 2012年05月6号 由 52nl...
  • GarfieldEr007
  • GarfieldEr007
  • 2015年11月16日 12:35
  • 1511

周志华《机器学习》笔记:第3章 线性模型

本章概括 从最简单但也是最基础的线性模型开始研究。线性模型虽然简单,但却是基础。先研究线性、单属性的线性回归问题,在此基础上研究非线性、多属性的回归和分类问题。 第3章 线性模型 单属性...
  • yzqzoom
  • yzqzoom
  • 2016年07月10日 12:11
  • 3125

机器学习练习(一)——简单线性回归

作者:John Wittenauer 翻译:GreatX 源:Machine Learning Exercises In Python, Part 1这篇文章是一系列 Andrew Ng 在 Co...
  • And_w
  • And_w
  • 2016年09月27日 17:38
  • 4379

Coursera 机器学习(by Andrew Ng)课程学习笔记(一)——简单的线性回归模型和梯度下降

Machine Learning Andrew Ng 学习笔记(一)——Week One Introduction、Model Represent 、 Cost Function and Gradie...
  • stalbo
  • stalbo
  • 2017年09月10日 15:41
  • 193

斯坦福机器学习第2课线性回归matlab实现和测试代码及笔记

  • 2015年12月28日 21:20
  • 36KB
  • 下载

从GLM广义线性模型到线性回归、二项式及多项式分类——机器学习笔记整理(一)

作为一名机器学习的爱好者,最近在跟着Andrew Ng 的 Machine Learning 学习。在讲义的第一部分中,Ng首先讲解了什么叫做监督学习,其次讲了用最小二乘法求解的线性模型,用sigmo...
  • gactyxc
  • gactyxc
  • 2016年09月11日 19:16
  • 928

机器学习笔记二:线性回归与最小二乘法

这篇笔记会将几本的线性回归概念和最小二乘法。其他的会在下一篇扩展。 在机器学习中,一个重要而且常见的问题就是学习和预测特征变量(自变量)与响应的响应变量(应变量)之间的函数关系 这里主要讨论线性函...
  • xierhacker
  • xierhacker
  • 2016年11月21日 15:56
  • 5148

机器学习笔记——正则化线性回归

1. 模型的欠拟合、过拟合 无论是回归问题还是分类问题都可能存在模型的欠拟合和过拟合的情况。下图是回归问题中的例子: 第一个模型欠拟合,第二个模型刚好拟合,第三个过拟合。 下图是分类问题中的例子:...
  • m0_37324740
  • m0_37324740
  • 2017年07月24日 20:20
  • 255
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[机器学习]机器学习笔记整理13-线性回归简单实现
举报原因:
原因补充:

(最多只允许输入30个字)