[深度学习]tensorflow模块安装与测试

原创 2017年09月01日 10:00:09

安装

第一步:安装pip
npm install pip

第2步:安装命令
pip install https://storage.googleapis.com/tensorflow/mac/tensorflow-0.5.0-py2-none-any.whl
第3步:测试 导入tensorflow如果不报错就成功
promote:~ apple$ import tensorflow

测试案例:

promote:~ apple$ python
Python 2.7.11 (v2.7.11:6d1b6a68f775, Dec  5 2015, 12:54:16) 
[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import tensorflow
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/sklearn/cross_validation.py:44: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.
  "This module will be removed in 0.20.", DeprecationWarning)
>>> cat hello_tensorflow.py 
  File "<stdin>", line 1
    cat hello_tensorflow.py 
                       ^
SyntaxError: invalid syntax
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> meaning = tf.constant('The Answer to Life, the Universe and Everything is ') 
>>> sess    = tf.Session()
>>> msg_op  = sess.run(hello)
>>> mean_op = sess.run(meaning)
>>> print(msg_op)
Hello, TensorFlow!
>>> print(mean_op)
The Answer to Life, the Universe and Everything is 
>>> a       = tf.constant(10)
>>> b       = tf.constant(32)
>>> cal_op  = sess.run(a + b)
>>> print(cal_op)
42
>>> sess.close()
>>> 
版权声明:本文为博主原创文章,未经博主允许不得转载。

TensorFlow saved_model 模块

saved_model模块主要用于TensorFlow Serving。TF Serving是一个将训练好的模型部署至生产环境的系统,主要的优点在于可以保持Server端与API不变的情况下,部署新的...
  • thriving_fcl
  • thriving_fcl
  • 2017年07月17日 00:09
  • 3064

1.深度学习框架——TensorFlow的安装与入门

研一时,从我身边的一些好基友中了解到,他们实验室用的框架都是caffe,前段时间我也在windows下尝试安装了Caffe,但白天“科研”任务中,编译时成功13个,失败3个,我还没有去找原因(大家最好...
  • qq_18297933
  • qq_18297933
  • 2016年09月08日 01:39
  • 11306

深度学习之Ubuntu下安装caffe和TensorFlow的cpu版本

当然如果你仅仅是初学者就只想快速感受一下caffe和TensorFlow的魅力,那么可以在Ubuntu下安装cpu版本跑几个demo看看。...
  • JasonZhangOO
  • JasonZhangOO
  • 2017年02月04日 21:09
  • 5805

在安卓上运行 TensorFlow:让深度学习进入移动端

本文授权转自OReillyData 如果你关注我的前一篇帖子,并按照其中的内容实践,你可能已经学会了如何在 Linux 上安装一个 GPU 加速的 TensorFlow,并构建了你自己的图像分类...
  • zhuiqiuk
  • zhuiqiuk
  • 2016年11月12日 11:24
  • 3415

TensorFlow【深度学习】安装Tensorflow与测试

安装过程 当前使用的安装方式是 anaconda, 当然也可以使用native pip方法, 参见官网: https://www.tensorflow.org/install/install_wi...
  • panshang1994
  • panshang1994
  • 2017年07月23日 15:04
  • 138

带你测试对比深度学习框架!TensorFlow,Keras,PyTorch...哪家强?(附数据集)

深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?对于这几大框架在运行各项深度任务时的性能差异如何,各位读者不免会有所好奇。 微软数据科学家Ilia ...
  • qq_41063944
  • qq_41063944
  • 2017年12月08日 14:11
  • 78

深度学习框架tensorflow,paddle,mxnet的实战性能对比测试

选用了业界主流的三种深度学习框架Paddle,TensorFlow和Mxnet,对它们分别作了研究和实战评估。用于测试的模型包括基于logistic回归模型和LSTM模型。...
  • lujian45
  • lujian45
  • 2017年04月25日 11:02
  • 2157

带你测试对比深度学习框架!TensorFlow,Keras,PyTorch...哪家强?(附数据集)

原文链接:点击打开链接 摘要: 深度学习框架哪家强:TensorFlow?Caffe?MXNet?Keras?PyTorch?对于这几大框架在运行各项深度任务时的性能差异如何,各位读者不免会...
  • qq_40954115
  • qq_40954115
  • 2017年12月08日 14:51
  • 48

Tensorflow深度学习笔记(五)--手写数字识别-MNIST数据测试

MNIST的结果是0-9,常用softmax函数进行分类,输出结果。 softmax函数常用于分类,定义如下: ​ softmax(xi)=exp(xi)∑je...
  • juyin2015
  • juyin2015
  • 2017年12月01日 22:07
  • 88

Tensorflow实战Google深度学习框架

  • 2017年12月19日 11:09
  • 96.59MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[深度学习]tensorflow模块安装与测试
举报原因:
原因补充:

(最多只允许输入30个字)