[深度学习]tensorflow基本概念01

转载 2017年09月01日 11:15:33

前言

用tensorflow这样工具的原因是:它允许我们用计算图(Computational Graphs)的方式建立网络.
下面就是对计算图的直观讲解。

例如:

结构

计算图所建立的只是一个网络框架。在编程时,并不会有任何实际值出现在框架中。所有权重和偏移都是框架中的一部分,初始时至少给定初始值才能形成框架。因此需要initialization初始化。

用法及参数说明:

请类比管道构建来理解计算图的用法

构造阶段(construction phase):

组装计算图(管道)

计算图(graph):

要组装的结构。由许多操作组成。

操作(ops):

接受(流入)零个或多个输入(液体),返回(流出)零个或多个输出。

数据类型:

主要分为张量(tensor)、变量(variable)和常量(constant)

张量:

多维array或list(管道中的液体)

创建语句:

tensor_name=tf.placeholder(type, shape, name)

参数说明:
dtype: 数据类型
shape: 张量
name: 名称(可选参数)
例如:

x = tf.placeholder(float, shape=(1024, 1024))

变量:

在同一时刻对图中所有其他操作都保持静态的数据(管道中的阀门)

创建语句:

name_variable = tf.Variable(value, name)

初始化语句:个别变量

init_op=variable.initializer()

所有变量

init_op=tf.initialize_all_variables()

注意:init_op的类型是操作(ops),加载之前并不执行

更新语句:

update_op=tf.assign(variable to be updated, new_value)

常量:

无需初始化的变量

创建语句:

name_constant=tf.constant(value)

执行阶段(execution phase):

使用计算图(获取液体)

会话:

执行(launch)构建的计算图。可选择执行设备:单个电脑的CPU、GPU,或电脑分布式甚至手机。

创建语句:常规

sess = tf.Session()

交互

sess = tf.InteractiveSession()

交互方式可用tensor.eval()获取值,ops.run()执行操作

关闭
sess.close()

执行操作:使用创建的会话执行操作

执行语句:

sess.run(op)

送值(feed):输入操作的输入值(输入液体)

语句:

sess.run([output], feed_dict={input1:value1, input2:value1})

取值(fetch):获取操作的输出值(得到液体)
语句:

单值获取

sess.run(one op)

多值获取

sess.run([a list of ops])

深度学习入门必须理解这25个概念

神经网络基础1)神经元(Neuron)——就像形成我们大脑基本元素的神经元一样,神经元形成神经网络的基本结构。想象一下,当我们得到新信息时我们该怎么做。当我们获取信息时,我们一般会处理它,然后生成一个...
  • pangjiuzala
  • pangjiuzala
  • 2017年05月22日 21:11
  • 5003

TensorFlow深度学习,一篇文章就够了

TensorFlow深度学习框架Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow。...
  • tab_space
  • tab_space
  • 2016年10月12日 11:26
  • 3681

“深度学习”学习笔记之深度信念网络 Deep Belief Network(DB)

“深度学习”学习笔记之深度信念网络    本篇非常简要地介绍了深度信念网络的基本概念。文章先简要介绍了深度信念网络(包括其应用实例)。接着分别讲述了:(1) 其基本组成结构——受限玻尔兹曼机的的基...
  • cs_zhangyi
  • cs_zhangyi
  • 2015年10月13日 08:57
  • 1190

深度学习框架TensorFlow学习与应用(一)——基本概念与简单示例

TensorFlow基本概念 使用图(graphs)来表示计算任务 在被称之为会话(Session)的上下文(context)中执行图 使用tensor表示数据 通过变量(Variable)维护状态 ...
  • JluTiger316
  • JluTiger316
  • 2017年11月08日 21:53
  • 197

TensorFlow笔记1:深度学习基本概念

深度学习基本概念结构基石 线性回归:基于线性映射关系的数据,找到其中的映射关系。最基本,最简单。无法描述复杂关系,所以需要添加非线性的映射关系。 神经网络:将非线性的映射关系叠加起来。输入是一维信息,...
  • ja33son
  • ja33son
  • 2017年03月20日 14:53
  • 194

深度学习笔记(0)——机器学习基本概念

本篇博客仅针对毫无机器学习理论背景的人,其他人可以直接跳过。机器学习(machine learning)是最近非常火的一个领域,关于其一些基本定义百度百科、维基百科或者网上随便都可以找到很多资料,所以...
  • qq_21190081
  • qq_21190081
  • 2017年01月19日 14:52
  • 3818

深度学习基础介绍:机器学习介绍和基本概念

1、机器学习     概念:专门研究计算机怎么模拟或实现人类的学习行为,以获取新知识和技能,重新组织已有知识结构使不断改善自身性能。     学科定位:人工智能(Artificial Intellig...
  • zxllll8898
  • zxllll8898
  • 2016年11月28日 16:09
  • 629

1.1 深度学习 基本概念

什么是深度学习? 深度学习是基于机器学习延伸出来的一个新的领域,由以人大脑结构为启发的神经网络算法为起源加之模型结构深度的增加发展,并伴随大数据和计算能力的提高而产生的一系列新的算法。 ...
  • liang_biao
  • liang_biao
  • 2016年07月11日 10:06
  • 547

深度学习常见的基本概念整理

卷积神经网络、过拟合、梯度弥散、局部极值、PCA、正则化、Dropout、BN
  • sinat_14916279
  • sinat_14916279
  • 2017年05月17日 21:37
  • 494

深度学习方法:受限玻尔兹曼机RBM(一)基本概念

最近在复习经典机器学习算法的同时,也仔细看了一些深度学习的典型算法。深度学习是机器学习的“新浪潮”,它的成功主要得益于深度“神经网络模型”的优异效果。这个小系列打算深入浅出地记录一下深度学习中常用的一...
  • xbinworld
  • xbinworld
  • 2015年04月17日 07:53
  • 14655
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:[深度学习]tensorflow基本概念01
举报原因:
原因补充:

(最多只允许输入30个字)