建立逻辑回归(LogisticRegression)二分类器

git:逻辑回归二分类器

已知数据集 testSet.txt 中数据格式如下:
这里写图片描述
设第一列特征为x1,第二列特征为x2,第三列标签为z

每一个特征都乘上一个回归系数w,则有

z=w0x0+w1x1+w2x2(x0=1) z = w 0 x 0 + w 1 x 1 + w 2 x 2 ( x 0 = 1 )
用向量表示法,可记为
z=WTX z = W T X

将z代入Sigmoid函数中,得:

σ(z)=11+ezz=WTX σ ( z ) = 1 1 + e − z , z = W T X

σ(WTX)=11+eWTX σ ( W T X ) = 1 1 + e − W T X
Sigmoid函数由于其图像特点,可以很方便的执行二分类的任务,大于0.5的数据归为一类,小于0.5的数据归为另一类.

Sigmoid函数:

import matplotlib.pyplot as plt
import numpy as np

def sigmoid(z):
    return 1 / (1 + np.exp(-z))

nums = np.arange(-5, 5, step=0.3)
fig = plt.figure(figsize=(12, 4))
ax = fig.add_subplot(111)
ax.plot(nums, sigmoid(nums), 'r')
plt.show()

这里写图片描述

梯度上升法:
记梯度为 ,则函数 f(x,y) f ( x , y ) 的梯度为

f(x,y)=f(x,y)xf(x,y)y ∇ f ( x , y ) = ( ∂ f ( x , y ) ∂ x ∂ f ( x , y ) ∂ y )

梯度代表了函数变化的方向,记 α α 为函数变化的大小,也称“步长”,则梯度上升算法的迭代公式为:

w:=w+αwf(w) w := w + α ∇ w f ( w )
w:=w+α(zσ(z))X ⇒ w := w + α ( z − σ ( z ) ) X
对应的梯度下降的迭代公式为
w:=wαwf(w) w := w − α ∇ w f ( w )
w:=wα(zσ(z))X ⇒ w := w − α ( z − σ ( z ) ) X

由此,我们就可以通过梯度上升法来寻找最佳的回归系数。

使用 Matplotlib 绘出数据点:

import TxtToNumpy
dataMat, labelList = TxtToNumpy.TxtToNumpy("testSet.txt")

type0_x = []; type0_y = []
type1_x = []; type1_y = []

for i in range(len(labelList)):
    if labelList[i] == 0:
        type0_x.append(dataMat[i][0])
        type0_y.append(dataMat[i][1])
    if labelList[i] == 1:
        type1_x.append(dataMat[i][0])
        type1_y.append(dataMat[i][1])

fig = plt.figure(figsize = (8, 4))
ax = fig.add_subplot(111)

type0 = ax.scatter(type0_x, type0_y, s = 30, c = 'r')
type1 = ax.scatter(type1_x, type1_y, s = 30, c = 'b')

ax.set_xlabel("X1")
ax.set_ylabel("X2")
ax.legend((type0, type1), ("Class 0", "Class 1"), loc=0)
plt.show()

TxtToNumpy.py 模块:

from numpy import *

def TxtToNumpy(filename):
    file = open(filename)
    file_lines_list = file.readlines()
    number_of_file_lines = len(file_lines_list)
    dataMat = zeros((number_of_file_lines, 3))
    labelList = []
    index = 0
    for line in file_lines_list:
        line = line.strip()
        line_list = line.split('\t')
        dataMat[index, :] = line_list[0:3]
        labelList.append(int(line_list[-1]))
        index += 1
    return dataMat, labelList

if __name__ == "__main__":
    print("Code Run As A Program")

这里写图片描述

画出决策边界:
①批处理梯度上升法求权重,进而画出决策边界:
批处理梯度上升法求权重时,每次更新回归系数都需要遍历整个数据集,因此准确度也最高,但计算复杂度也非常高。

BpGradientAscent.py 模块:


# coding: utf-8
#Batch Processing Gradient Ascent

import numpy as np
import matplotlib.pyplot as plt


#将txt文件中储存的数据和标签分别存储在列表dataMat和labelMat中
def loadDataSet(filename):
    dataList = []
    labelList = []
    fr = open(filename)
    for line in fr.readlines():
        #将每一行的各个元素取出存放在列表lineArr中
        lineArr = line.strip().split()
        #[ , , ]中三个参数代表了公式 z = W^T X中的X,第一个X的值为1
        dataList.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelList.append(int(lineArr[2]))
    return dataList, labelList


#sigmoid函数,用于分类
def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))

#batch Processing Gradient Ascent,批处理梯度上升求权重W; alpha表示步长, maxCycles表示梯度上升算法的最大迭代次数
def bpGradientAscent(filename, alpha=0.001, maxCycles=500):
    dataList, labelList = loadDataSet(filename)
    dataMatrix = np.mat(dataList)
    #teanspose()用于矩阵转置
    labelMatrix = np.mat(labelList).transpose()
    m, n = np.shape(dataMatrix)
    weights = np.ones((n, 1))
    for i in range(maxCycles):
        sig = sigmoid(dataMatrix * weights)
        error = labelMatrix - sig
        weights = weights + alpha * dataMatrix.transpose() * error
    #getA()将矩阵转换为数组
    return weights.getA()

#画出决策边界
def decisionBoundary(weights, filename):
    dataMat, labelMat = loadDataSet(filename)
    dataArr = np.array(dataMat)
    n = np.shape(dataArr)[0]

    type0_x = []; type0_y = []
    type1_x = []; type1_y = []

    for i in range(n):
        if labelMat[i] == 0:
            type0_x.append(dataMat[i][1])
            type0_y.append(dataMat[i][2])
        if labelMat[i] == 1:
            type1_x.append(dataMat[i][1])
            type1_y.append(dataMat[i][2])

    fig = plt.figure(figsize = (8, 4))
    ax = fig.add_subplot(111)

    type0 = ax.scatter(type0_x, type0_y, s = 30, c = 'r')
    type1 = ax.scatter(type1_x, type1_y, s = 30, c = 'b')

    x1 = np.arange(-4.5, 4.5, 0.1)
    x2 = (-weights[0]-weights[1]*x1) / weights[2]

    ax.set_xlabel("X1")
    ax.set_ylabel("X2")
    ax.legend((type0, type1), ("Class 0", "Class 1"), loc=0)
    ax.plot(x1, x2)
    plt.show()

if __name__ == "__main__":
    print("Code Run as a Program!")

调用该 BpGradientAscent.py 模块:

import matplotlib.pyplot as plt
import numpy as np

import BpGradientAscent

BpGradientAscent.decisionBoundary(BpGradientAscent.bpGradientAscent("testSet.txt"), "testSet.txt")

得到决策边界(蓝线):
这里写图片描述

②小批量随机梯度上升法求权重,进而画出决策边界:
小批量随机梯度上升法求权重时,每次更新回归系数只需要选取一部分数据,准确度相对于批处理梯度上升法有所降低,但计算复杂度相对也降低很多,可以通过调整步长和最大迭代次数来提供决策边界的准确度。

SbsGradientAscent.py 模块:


# coding: utf-8
#Small Batch Stochastic Gradient Ascent


import numpy as np
import matplotlib.pyplot as plt


#将txt文件中储存的数据和标签分别存储在列表dataMat和labelMat中
def loadDataSet(filename):
    dataList = []
    labelList = []
    fr = open(filename)
    for line in fr.readlines():
        #将每一行的各个元素取出存放在列表lineArr中
        lineArr = line.strip().split()
        #[ , , ]中三个参数代表了公式 z = W^T X中的X,第一个X的值为1
        dataList.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelList.append(int(lineArr[2]))
    return dataList, labelList


#sigmoid函数,用于分类
def sigmoid(z):
    return 1.0 / (1 + np.exp(-z))

#small Batch Stochastic Gradient Ascent,小批量随机梯度上升求权重;maxCycles表示梯度上升算法的最大迭代次数
def sbsGradientAscent(filename, maxCycles = 300):
    dataList, labelList = loadDataSet(filename)
    m, n = np.shape(dataList)
    weights = np.ones(n)
    for i in range(maxCycles):
        dataIndex = range(m)
        for j in range(m):
            #alpha表示步长
            alpha = 4 / (1.0 + i + j) + 0.001
            #uniform()表示在参数范围内随机取值
            randomIndex = int(np.random.uniform(0, len(dataIndex)))
            error = labelList[randomIndex] - sigmoid(sum(dataList[randomIndex] * weights))
            weights = weights + alpha * error * np.array(dataList[randomIndex])
            #从列表中移除刚刚被随机选取的值
            del(list(dataIndex)[randomIndex])
    return weights


def decisionBoundary(weights, filename):
    dataMat, labelMat = loadDataSet(filename)
    dataArr = np.array(dataMat)
    n = np.shape(dataArr)[0]

    type0_x = []; type0_y = []
    type1_x = []; type1_y = []

    for i in range(n):
        if labelMat[i] == 0:
            type0_x.append(dataMat[i][1])
            type0_y.append(dataMat[i][2])
        if labelMat[i] == 1:
            type1_x.append(dataMat[i][1])
            type1_y.append(dataMat[i][2])

    fig = plt.figure(figsize = (8, 4))
    ax = fig.add_subplot(111)

    type0 = ax.scatter(type0_x, type0_y, s = 30, c = 'r')
    type1 = ax.scatter(type1_x, type1_y, s = 30, c = 'b')

    x1 = np.arange(-4.5, 4.5, 0.1)
    x2 = (-weights[0]-weights[1]*x1) / weights[2]

    ax.set_xlabel("X1")
    ax.set_ylabel("X2")
    ax.legend((type0, type1), ("Class 0", "Class 1"), loc=0)
    ax.plot(x1, x2)
    plt.show()

if __name__ == "__main__":
    print("Code Run as a Program!")

调用 SbsGradientAscent.py 模块:

import matplotlib.pyplot as plt
import numpy as np

import SbsGradientAscent

SbsGradientAscent.decisionBoundary(SbsGradientAscent.sbsGradientAscent("testSet.txt"), "testSet.txt")

得到决策边界(蓝线):
这里写图片描述

BpGradientAscent.py 模块 和 SbsGradientAscent.py 模块的不同之处在于其中的 bpGradientAscent()函数和 sbsGradientAscent()函数 不同,分别表示 批处理梯度上升求权重 和 小批量随机梯度上升求权重

bpGradientAscent()函数:

#batch Processing Gradient Ascent,批处理梯度上升求权重W; alpha表示步长, maxCycles表示梯度上升算法的最大迭代次数
def bpGradientAscent(filename, alpha=0.001, maxCycles=500):
    dataList, labelList = loadDataSet(filename)
    dataMatrix = np.mat(dataList)
    #teanspose()用于矩阵转置
    labelMatrix = np.mat(labelList).transpose()
    m, n = np.shape(dataMatrix)
    weights = np.ones((n, 1))
    for i in range(maxCycles):
        sig = sigmoid(dataMatrix * weights)
        error = labelMatrix - sig
        weights = weights + alpha * dataMatrix.transpose() * error
    #getA()将矩阵转换为数组
    return weights.getA()

sbsGradientAscent()函数:

#small Batch Stochastic Gradient Ascent,小批量随机梯度上升求权重;maxCycles表示梯度上升算法的最大迭代次数
def sbsGradientAscent(filename, maxCycles = 300):
    dataList, labelList = loadDataSet(filename)
    m, n = np.shape(dataList)
    weights = np.ones(n)
    for i in range(maxCycles):
        dataIndex = range(m)
        for j in range(m):
            #alpha表示步长
            alpha = 4 / (1.0 + i + j) + 0.001
            #uniform()表示在参数范围内随机取值
            randomIndex = int(np.random.uniform(0, len(dataIndex)))
            error = labelList[randomIndex] - sigmoid(sum(dataList[randomIndex] * weights))
            weights = weights + alpha * error * np.array(dataList[randomIndex])
            #从列表中移除刚刚被随机选取的值
            del(list(dataIndex)[randomIndex])
    return weights

最终得到的决策边界(蓝线)为:
bpGradientAscent()函数:
这里写图片描述
sbsGradientAscent()函数:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值