数量积、向量积与混合积

数量积

对两个向量 a → \overrightarrow a a b → \overrightarrow b b 进行运算,运算的结果是一个数,这个数等于 ∣ a → ∣ 、 ∣ b → ∣ |\overrightarrow a|、|\overrightarrow b| a b 及它们的夹角 θ \theta θ的余弦的乘积,则这个数称作数量积,记做: a → ⋅ b → \overrightarrow a ·\overrightarrow b a b

定义式
a → ⋅ b → = ∣ a → ∣ ∣ b → ∣ cos ⁡ θ \overrightarrow a · \overrightarrow b = |\overrightarrow a||\overrightarrow b| \cos \theta a b =a b cosθ

坐标表达式(空间坐标系):
a → ⋅ b → = a x b x + a y b y + a z b z \overrightarrow a · \overrightarrow b = a_xb_x + a_yb_y + a_zb_z a b =axbx+ayby+azbz
由定义式和坐标表达式可以求得两向量夹角 θ \theta θ的余弦的乘积
cos ⁡ θ = a → ⋅ b → ∣ a → ∣ ∣ b → ∣ = a x b x + a y b y + a z b z a x 2 + a y 2 + a z 2 b x 2 + b y 2 + b z 2 \cos \theta = \frac{\overrightarrow a · \overrightarrow b}{ |\overrightarrow a||\overrightarrow b|} = \frac{a_xb_x + a_yb_y + a_zb_z}{\sqrt{a_x^2 + a_y^2 + a_z^2}\sqrt{b_x^2 + b_y^2 + b_z^2}} cosθ=a b a b =ax2+ay2+az2 bx2+by2+bz2 axbx+ayby+azbz

数量积的特点

  • a → ⋅ a → = ∣ a → ∣ 2 cos ⁡ 0 = ∣ a → ∣ 2 \overrightarrow a · \overrightarrow a = |\overrightarrow a|^2 \cos 0 = |\overrightarrow a|^2 a a =a 2cos0=a 2
  • 向量 a → ⊥ b → \overrightarrow a \bot \overrightarrow b a b 的充要条件是 a → ⋅ b → = 0 \overrightarrow a · \overrightarrow b = 0 a b =0
  • 两个向量数量积的结果是一个数

数量积的运算规律

  • 交换律: a → ⋅ b → = b → ⋅ a → \overrightarrow a · \overrightarrow b = \overrightarrow b · \overrightarrow a a b =b a
  • 分配律: ( a → + b → ) ⋅ c → = a → ⋅ c → + b → ⋅ c → (\overrightarrow a + \overrightarrow b)· \overrightarrow c = \overrightarrow a · \overrightarrow c + \overrightarrow b · \overrightarrow c (a +b )c =a c +b c
  • 常数结合律: ( λ a → ) ⋅ b → = λ ( a → ⋅ b → ) ; λ 为 常 数 (\lambda \overrightarrow a)· \overrightarrow b = \lambda(\overrightarrow a · \overrightarrow b);\lambda 为常数 (λa )b =λ(a b );λ

向量积

c → \overrightarrow c c a → 、 b → \overrightarrow a、\overrightarrow b a b 按下列方式定义出:

  1. ∣ c → ∣ = ∣ a → ∣ ∣ b → ∣ sin ⁡ θ |\overrightarrow c| = |\overrightarrow a||\overrightarrow b| \sin \theta c =a b sinθ,其中 θ \theta θ a → 、 b → \overrightarrow a、\overrightarrow b a b 之间的夹角
  2. c → \overrightarrow c c 的垂直于 a → \overrightarrow a a b → \overrightarrow b b 所决定的平面
  3. c → \overrightarrow c c 的指向按"向量右手规则"从 a → \overrightarrow a a 转向 b → 来 确 定 \overrightarrow b来确定 b

向量右手规则
假设已经在平面上确定了x和y轴,若想再建立一个z轴将平面扩充成空间,且z轴既垂直于x轴,也垂直于y轴(即垂直于已有的平面)。因为数轴存在方向,所以可以有两条(正负各一条),但是数轴必须要有一个正方向,所以必须从两条里面选一条做正方向,因此,有了
向量右手规则*:把右手伸出来,摊开,四指先指向x的方向,然后自然弯曲90度,如果此时四指刚好指向y的方向,那么大拇指的指向就是z的正方向了。

c → \overrightarrow c c 叫做 a → \overrightarrow a a b → \overrightarrow b b 的向量积,记做 a → × b → \overrightarrow a × \overrightarrow b a ×b

定义式
c → = a → × b → \overrightarrow c = \overrightarrow a × \overrightarrow b c =a ×b

坐标表达式
a → × b → = ∣ 1 1 1 a x a y a z b x b y b z ∣ \overrightarrow a × \overrightarrow b = \begin{vmatrix} 1 & 1 & 1 \\ a_x & a_y & a_z \\ b_x & b_y & b_z \\ \end{vmatrix} a ×b =1axbx1ayby1azbz

向量积的特点

  • ∣ a → × a → ∣ = ∣ a → ∣ ∣ a → ∣ sin ⁡ 0 = 0 |\overrightarrow a × \overrightarrow a| = |\overrightarrow a||\overrightarrow a|\sin 0 = 0 a ×a =a a sin0=0
  • a → / / b → \overrightarrow a // \overrightarrow b a //b 的充要条件是 a → × b → = 0 \overrightarrow a × \overrightarrow b = 0 a ×b =0
  • a → 、 b → \overrightarrow a、\overrightarrow b a b 在同一平面内,则该平面的法向量 n → = a → × b → \overrightarrow n = \overrightarrow a×\overrightarrow b n =a ×b
  • ∣ c → ∣ = ∣ a → ∣ ∣ b → ∣ sin ⁡ θ |\overrightarrow c| = |\overrightarrow a||\overrightarrow b| \sin \theta c =a b sinθ可以知道,向量积的大小等于以 ∣ a → ∣ 、 ∣ b → ∣ |\overrightarrow a|、|\overrightarrow b| a b 为边长的平行四边形面积的大小
  • 两个向量向量积的结果是一个向量

向量积的运算规律

  • a → × b → = − b → × a → \overrightarrow a × \overrightarrow b = - \overrightarrow b × \overrightarrow a a ×b =b ×a ,原因是右向量右手规则会得出两个大小相同方向相反的向量
  • 分配律: ( a → + b → ) × c → = a → × c → + b → × c → (\overrightarrow a + \overrightarrow b) × \overrightarrow c = \overrightarrow a × \overrightarrow c + \overrightarrow b × \overrightarrow c (a +b )×c =a ×c +b ×c
  • 常数结合律: ( λ a → ) × b → = a → × ( λ b → ) = λ ( a → × b → ) (\lambda \overrightarrow a) × \overrightarrow b = \overrightarrow a × (\lambda \overrightarrow b) = \lambda (\overrightarrow a × \overrightarrow b) (λa )×b =a ×(λb )=λ(a ×b )

混合积

设已知三个向量 a → 、 b → \overrightarrow a、\overrightarrow b a b c → \overrightarrow c c 。先作两向量 a → \overrightarrow a a b → \overrightarrow b b 的向量积 a → × b → \overrightarrow a × \overrightarrow b a ×b ,把所得的向量积与 c → \overrightarrow c c 再做数量积,这样得到的数量就叫 a → 、 b → 、 c → \overrightarrow a、\overrightarrow b 、 \overrightarrow c a b c 的混合积,记做 [ a → b → c → ] [\overrightarrow a \overrightarrow b \overrightarrow c] [a b c ]

定义式
[ a → b → c → ] = ( a → × b → ) ⋅ c → = ∣ a x a y a z b x b y b z c x c y c z ∣ [\overrightarrow a \overrightarrow b \overrightarrow c] = (\overrightarrow a × \overrightarrow b) · \overrightarrow c = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \\ \end{vmatrix} [a b c ]=(a ×b )c =axbxcxaybycyazbzcz

混合积的特点

  • [ a → b → c → ] = 0 [\overrightarrow a \overrightarrow b \overrightarrow c] = 0 [a b c ]=0,则 a → 、 b → 、 c → \overrightarrow a、 \overrightarrow b、 \overrightarrow c a b c 共面
  • 11
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值