一步一步复习数据结构和算法基础-图的创建和基本操作(邻接矩阵)

原创 2012年07月21日 19:41:41

邻接矩阵写起来还是比较简单的。。。。。。

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#define number 20
typedef struct node
{
	int info;		//图的节点存放的信息,可随时变动
}GraphNode;
typedef struct
{
	GraphNode matrix[number+1][number+1];		//构造邻接矩阵
	int vexs[number+1];							//顶点向量
	int vertex,edge;							//顶点个数、弧个数
}Graph;

//创建图
void CreatGraph(Graph *G)
{
	int i,k;
	int x,y,data;
	int vertex,edge;
	printf("输入图的顶点个数和边的个数.\n");
	scanf("%d%d",&vertex,&edge);
	G->vertex = vertex;G->edge = edge;
	printf("输入图的每个顶点.\n");
	for(i=1;i<=vertex;i++)
		scanf("%d",&G->vexs[i]);
	for(i=1;i<=vertex;i++)
		for(k=1;k<=vertex;k++)
			G->matrix[i][k].info = 0;

	printf("请输入 %d 条边的横坐标、纵坐标、数值.\n",edge);
	for(i=1;i<=edge;i++)
	{
		scanf("%d%d%d",&x,&y,&data);
		G->matrix[x][y].info=data;
	}
}

//找出给定顶点的位置
int LocateVex(Graph *G,int V)
{
	int i;
	for(i=1;i<=G->vertex;i++)
		if(G->vexs[i] == V)
			return i;
	return -1;						//失败返回-1
}

//将指定顶点的数值改变
void PutVex(Graph *G,int V,int value)
{
	int temp;
	if((temp =LocateVex(G,V)) == -1)return;
	else G->vexs[temp] = value;
}

//找出指定顶点在图中的第一个邻接点
int FirstAdjVex(Graph *G,int V)
{
	int temp,i;
	if((temp = LocateVex(G,V))==-1) return -1;	//失败返回-1
	else
	{
		for(i=1;i<=G->vertex;i++)
			if(G->matrix[temp][i].info != 0)
				return G->matrix[temp][i].info;
	}
	return -1;
}

//向图中插入一个顶点
int InsertVex(Graph *G,int V)
{
	int i;
	G->vertex++;
	if(G->vertex > number)return 0;
	G->vexs[G->vertex] = V;
	for(i=1;i<=G->vertex;i++)
		G->matrix[G->vertex][i].info = 0;
	for(i=1;i<G->vertex;i++)
		G->matrix[i][G->vertex].info = 0;
	return 1;
}

//在图中删除一个顶点
int DeleteVex(Graph *G,int V)
{
	int i,temp,k;
	int count=0;
	if((temp=LocateVex(G,V)) == -1)return -1;

	//顶点数组变化
	for(i=temp;i<G->vertex;i++)
		G->vexs[i] = G->vexs[i+1];
	//顶点入度变化
	for(i=1;i<=G->vertex;i++)
	{
		if(G->matrix[i][temp].info)count++;
		for(k=temp;k<G->vertex;k++)
		{
			G->matrix[i][k].info=G->matrix[i][k+1].info;
		}
	}
	//顶点出度变化
	for(i=1;i<G->vertex;i++)
	{
		for(k=temp;k<G->vertex;k++)
			G->matrix[k][i].info = G->matrix[k+1][i].info;
	}
	G->vertex--;		//顶点减一
	G->edge -= count;	//弧减去对应的个数
	return 1;
}

//在图中插入一条弧
int InsertArc(Graph *G,int v,int w)
{
	int digit;
	if(v<0||v> G->vertex||w<0||w>G->vertex)return -1;
	printf("输入弧的权值.\n");
	scanf("%d",&digit);
	G->matrix[v][w].info = G->matrix[w][v].info  = digit;
	return 1;
}

//在图中删除一条弧
int DeleteArc(Graph *G,int v,int w)
{
	if(v<0||v> G->vertex||w<0||w>G->vertex)return -1;
	G->matrix[v][w].info = G->matrix[w][v].info  = 0;
	return 1;
}

//打印图
void DisplayGraph(Graph *G)
{
	int i,k;
	for(i=1;i<=G->vertex;i++)
	{
		for(k=1;k<=G->vertex;k++)
			printf("%-4d ",G->matrix[i][k].info);
		printf("\n");
	}
	printf("\n");
}


void RecoverGraph(Graph *G)
{
	int i,k;
	for(i=1;i<=G->vertex;i++)
		for(k=1;k<=G->vertex;k++)
			G->matrix[i][k].info=0;
	memset(G->vexs,0,sizeof(G->vexs));
	G->vertex = G->edge = 0;
	
}
int main()
{
	Graph G;
	CreatGraph(&G);
	DisplayGraph(&G);
	printf("%d\n",LocateVex(&G,4));
	printf("%d\n",FirstAdjVex(&G,4));
	InsertVex(&G,34);
	DeleteVex(&G,4);
	DisplayGraph(&G);
	return 0;
}


相关文章推荐

一步一步复习数据结构和算法基础-二叉树基本操作

思考了一下午啊,看来自己太水了。 #include #include typedef int elemtype; //整形为树的数据类型 typedef struct node { ele...

数据结构之无向图基本操作(采用邻接矩阵存储)—整理严蔚敏数据结构

//无向图的邻接表存储实现图的基本操作 #include using namespace std; #define MAXVEX 100 typedef char VexType; typedef ...

一步一步学数据结构之n--n(图--邻接矩阵法实现)

今天我和大家一起来学习图,首先说下图的定义:   图分为有向图和无向图   在这里,来一起了解下度和权的概念:   这里介绍图的常用操作: l 创建图 l 销毁图 l 清空图的边 l...

算法与数据结构基础9:C++实现有向图——邻接矩阵存储

邻接矩阵的存储比邻接表实现起来更加方便,也更加容易理解。 邻接矩阵就是用一个二维数组matrix来存储每两个点的关系。如果两个点m,n之间有边,将数组matrix[]m[m]设为1,否则设为0。 如果...

图的数组(邻接矩阵)存储结构和基本操作

书本当然是严奶奶的那本《数据结构(C语言版)》 参考代码:《数据结构》算法实现及解析(高一凡) 本文主要还是对这两位大神的东西整理一下,其实哈哈,还是代码的搬运工(逃) /***...

数据结构.图.无向带权&邻接矩阵.最短路径Dijkstra算法

图的应用实在很广,课堂所学实为皮毛 考虑基于邻接矩阵的无向带权图,边的权值的典型意义就是路途的长度,从顶点u到顶点v的边权值为w,可以表示城市u到城市v之间路长为w。 最短路径问题考虑的就是从某个顶点...

【数据结构】拾遗(二):连通图邻接矩阵图的prim算法

连通图的prim算法主要是求连通图的最小生成树。主要的思想是从图上某一点开始,找与之最近的(权重最小的)顶点,保存边和顶点。然后找与这两个点最近的(权重最小的)的顶点。循环往之,并每次保存边和边的顶点...

数据结构基础 之 图 的 邻接矩阵实现与邻接表实现

首先,本文给出邻接表与邻接矩阵的概念,然后,对相关概念进行阐释并给出实现源码,最后,对两种方法进行了比较分析给出给进一步的改进方向。...

数据结构与算法之图的邻接表与邻接矩阵<十二>

现实中的许许多多的事务都是网状结构也就是图结构。当你面临一个复杂的网状关系问题。也许你已经有了解决的方法,但是如何用编程实现呢。首先的问题就是如何将网状图程序化。若是不能清楚简单的描述这些关系,对你解...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一步一步复习数据结构和算法基础-图的创建和基本操作(邻接矩阵)
举报原因:
原因补充:

(最多只允许输入30个字)