使用Spark core和SparkSQL的窗口函数分别实现分组取topN的操作

原创 2016年08月29日 18:07:43

在spark 1.4及以上版本中,针对sparkSQL,添加了很多新的函数,进一步扩展了SparkSQL对数据的处理能力。

本篇介绍一个强大的窗口函数 row_number()函数,常用于对数据进行分组并取每个分组中的TopN数据。

示例数据如下:

class1 90

class2 56

class1 87

class1 76

class2 88

class1 95

class1 74

class2 87

class2 67

class2 77

1、直接使用Spark core中的api来实现分组取topN功能: 
首先将数据源读入代JavaRDD中,然后解析每一行数据,将每一行的第一个元素作为key,第二元素作为value构成tuple的RDD

SparkConf conf = new SparkConf().setAppName("groupTopN").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> lines = sc.textFile("C:\\Temp\\groupTopN.txt");
JavaPairRDD<String,Integer> pairs = lines.mapToPair(new PairFunction<String, String, Integer>() {
@Overridepublic Tuple2<String, Integer> call(String line) throws Exception { 
   String[] lineSplited = line.split(" ");   
   return new Tuple2<String,Integer>(lineSplited[0],Integer.valueOf(lineSplited[1]));
   }
   } );

得到pairs是一个二元组的RDD,直接调用groupByKey()函数,就可以按照key来进行分组了

JavaPairRDD<String, Iterable<Integer>> grouped = pairs.groupByKey();

分组后每个key对应的这一个value的集合,这里,需要对每个key对应的value集合首先进行排序,然后取其前N个元素即可

JavaPairRDD<String,Iterable> groupedTopN = grouped.mapToPair(new PairFunction<Tuple2<String,Iterable<Integer>>, String, Iterable>() {        @Override
        public Tuple2<String, Iterable> call(Tuple2<String, Iterable<Integer>> values) throws Exception {
            Iterator<Integer> iter = values._2.iterator();
            List<Integer> list = new ArrayList<Integer>();
            while(iter.hasNext()){
                list.add(iter.next());
            }
            //将list中的元素排序
            list.sort(new Comparator<Integer>() {
                @Override
                public int compare(Integer t1, Integer t2) {
                    int i1 = t1;
                    int i2 = t2;
                    return -(i1 - i2);//逆序排列
                }
            });

             List<Integer> top3 = list.subList(0, 3);//直接去前3个元素
            return new Tuple2<String,Iterable>(values._1,top3);
        }
    });

为了便于验证,直接咋本地进行测试,并打印显示

groupedTopN.foreach(new VoidFunction<Tuple2<String,Iterable>>() { 
   @Override    
   public void call(Tuple2<String, Iterable> t) 
   throws Exception {
   System.out.println(t._1); 
   Iterator iterator = t._2.iterator();    
   while(iterator.hasNext()){  
   System.out.println(iterator.next()); 
   }        
   System.out.println("====华丽的分割线======="); 
   }});

2、使用SparkSQL的窗口函数来时上同样的功能

思路: 
窗口函数是HiveSQL中特有的,因此,首先将数据导入到hive表中,然后映射到Spark的DataFrame,在sql语句中直接调用窗口函数即可实现该功能

首先,直接在HiveSQL中创建对应的hive表,然后导入本地数据到hive表中

SparkConf conf = new SparkConf().setAppName("WindowFunctionTopN").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
HiveContext hiveContext = new HiveContext(sc.sc());
//将数据导入到hive表中
hiveContext.sql("DROP TABLE IF EXISTS class_info");
hiveContext.sql("CREATE TABLE IF NOT EXISTS class_info ("        + "class STRING,"        + "score INT");
hiveContext.sql("LOAD DATA "        + "LOCAL INPATH '/cqt/testdata/groupTopN.txt' "        + "INTO TABLE class_info");

然后,直接调用窗口函数row_number(),注意窗口函数的调用语法

<code class="hljs sql has-numbering" style="display: block; padding: 0px; color: inherit; box-sizing: border-box; font-family: 'Source Code Pro', monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">DataFrame tom3DF = hiveContext.sql("<span class="hljs-operator" style="box-sizing: border-box;"><span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">select</span> class,score <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">from</span><span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">" +"</span>(<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">select</span> class,score,<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"
                + "</span>row_number() OVER (PARTITION <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">BY</span> class <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">ORDER</span> <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">BY</span> score <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">DESC</span>) rank <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">from</span> class_info) tmp <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">where</span> rank<=<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">3</span><span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">");</span></span></code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li></li></ul>
将得到的数据回写到hive表中保存即可

// 将每组排名前3的数据,保存到一个表中

hiveContext.sql("DROP TABLE IF EXISTS grouped_top3"); tom3DF.saveAsTable("grouped_top3");

至此,代码,编写完毕,相比于第一种方式,代码清爽很多!







版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Spark实例TopN---Spark学习笔记11

Spark是基于内存的分布式计算框架,性能是shi

Spark SQL 函数操作

Spark 内置函数 使用Spark SQL中的内置函数对数据进行分析,Spark SQL API不同的是,DataFrame中的内置函数操作的结果是返回一个Column对象,而DataFrame...

spark中实现分组取topN

分组取topN

Spark中实现分组取TOP N (Scala版本)

1、源数据如下,取出每班成绩的前三名 class1 98 class2 90 class2 92 class1 96 class1 100 class2 89 class2 68 class1 81 ...

[2.4]以row_number为例解读spark sql的窗口函数

参考spark官网 王家林DT大数据梦工厂场景将本地文件toNGroup.txt中的内容:hadoop@master:~/resource$ cat toNGroup.txt hadoop 29 ...

第71课:Spark SQL窗口函数解密与实战学习笔记

第71课:Spark SQL窗口函数解密与实战学习笔记 本期内容: 1 SparkSQL窗口函数解析 2 SparkSQL窗口函数实战   窗口函数是Spark内置函数中最有价值的函数,因为...
  • slq1023
  • slq1023
  • 2016年04月13日 00:40
  • 3046

Spark分析窗口函数

Spark1.4发布,支持了窗口分析函数(window functions)。 在离线平台中,90%以上的离线分析任务都是使用Hive实现,其中必然会使用很多窗口分析函数,如果SparkSQL支持窗...

Spark核心编程-分组取topN

案例需求 对每个班级内的学生成绩,取出前3名。(分组取topN)

Java实现GroupBy/分组TopN功能

介绍在Java 8 的Lambda(stream)之前,要在Java代码中实现类似SQL中的group by分组聚合功能,还是比较困难的。这之前Java对函数式编程支持不是很好,Scala则把函数式编...

sparksql分组后topN(JAVA)

org.apache.spark spark-core_2.10 1.6.0 org.apache.spark spark-sql_2.10 1.6.0 ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:使用Spark core和SparkSQL的窗口函数分别实现分组取topN的操作
举报原因:
原因补充:

(最多只允许输入30个字)