# 判别模型（descriminative model)+生成模型(generative model)

390人阅读 评论(0)

## 判别模型（descriminative model)+生成模型(generative model)

http://en.wikipedia.org/wiki/Generative_model

http://workingmidi.blogspot.com/2007/06/generative-model.html

http://blog.csdn.net/hitmonkey/archive/2008/05/15/2448906.aspx

For a data sample: x and it class lable:,y,

Discrimitive model: p(y|x), 给定x,算y。

Generative model:和 discrimitive model的区别：
Generative model focus

Generative model 实际上带的information 要比discrimitive model rich,

decision boundary。这里说的generative model 和 discrimitive
model，在行业里，这个说法是通用的。

generative model。因为需要用到P(x), 如果只是label的话，p(y)很简单，但为什么不能直接用Generative
model 呢？

Discrimitive model: 相当于在图像上scan 一下，detection, 用一个path,在不同的scale

Discrimitive 比较easy to learn， 给出正负例，给出lable, focus ondiscrimitive
model marginal distribution。 某种意义上，比generativemodel 要简单，但power是
limited, 可以告诉你的时1还是2，但没有办法把整个场景描述出来。
P(x|y) P(y)

computing 要比 discrimitive model 复杂得多

Discriminative Model是判别模型，又可以称为条件模型，或条件概率模型。
Generative Model是生成模型，又叫产生式模型。

discriminative model 估计的是条件概率分布(conditional
distribution)p(class|context)
generative model 估计的是联合概率分布（joint probabilitydistribution）p()

– Gaussians, Naive Bayes, Mixtures of multinomials
– Mixtures of Gaussians, Mixtures of experts, HMMs
– Sigmoidal belief networks, Bayesian networks
– Markov random fields

– logistic regression
– SVMs
– Nearest neighbor

Successes of Generative Methods：

NLP
– Traditional rule-based or Boolean logic systems
Dialog and Lexis-Nexis) are giving way to statistical
approaches (Markov models and stochastic context
grammars)
Medical Diagnosis
– QMR knowledge base, initially a heuristic expert
systems for reasoning about diseases and symptoms
been augmented with decision theoretic formulation
Genomics and Bioinformatics
– Sequences represented as generative HMMs

Image and document classification
Biosequence analysis
Time series prediction

Discriminative Model缺点：
Lack elegance of generative
– Priors, structure, uncertainty
Alternative notions of penalty functions,
regularization, kernel functions

Feel like black-boxes
– Relationships between variables are not explicit
and visualizable

Bridging Generative and Discriminative：
Can performance of SVMs be combined
elegantly with flexible Bayesian statistics?

Maximum Entropy Discrimination marries
both methods
– Solve over a distribution of parameters (a
distribution over solutions)

1
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：7662次
• 积分：171
• 等级：
• 排名：千里之外
• 原创：10篇
• 转载：2篇
• 译文：0篇
• 评论：4条
文章分类
评论排行
最新评论