导数与微积分初步

原创 2016年05月31日 20:22:37

看了一下书,来口胡一下自己

极限

极限运算法则
lim[f(x)±g(x)]=limf(x)±limg(x)
lim[f(x)g(x)]=limf(x)limg(x)
limf(x)g(x)=limf(x)limg(x) (limg(x)!=0)

夹逼定理
若有

limxX0F(x)=limxX0G(x)=A

且函数 f(x)X0的某邻域内恒有
F(x)<=f(x)<=G(x)

则有
limxX0F(x)<=limxX0f(x)<=limxX0G(x)

limxX0f(x)=A

(这里X0可以换成)

两个重要极限
(1) limx0sinxx=1
(2) limx(1+1x)x=e
[变] limx(11x)x=1e

函数的间断点
第一类:可去间断点、跳跃间断点
第二类:无穷间断点、震荡间断点

导数

常用求导公式
(1) C=0
(2) xμ=μxμ1
(3) (ax)=axlnx (a > 0,a != 1)
(4) (logax)=1xlna (a > 0,a != 1)
(5) (sinx)=cosx
(6) (cosx)=sinx
(7) (tanx)=sec2x

导数的四则运算法则
(1) u±v=u±v
(2) (uv)=uv+uv
(3) (uv)=uvuvv2 (v != 0)

反函数的求导法则
反函数的导数等于直接函数导数的倒数,即 [f1(x)]=1f(y)

复合函数的求导法则
如果 u=g(x) 在点 x 可导,而 y=f(u) 在点 u=g(x)可导,那么复合函数 y=f[g(x)] 在点 x 可导,且其导数为

dydx=f(u)g(x)dydx=dydududx

ex1. 设 y=sin2x1+x2,求 dydx
y=sinu,u=2x1+x2

dydududx=cosu=2(1+x2)(2x)2(1+x2)2=2(1x2)(1+x2)2

所以
dydx=cosu2(1x2)(1+x2)2=2(1x2)(1+x2)2cos2x1+x2

高阶导数
莱布尼茨公式:(uv)(n)=nk=0Cknu(nk)v(k)

隐函数的导数
ex1. 求椭圆 x216+y29=1 在点 (2,323) 处的切线方程
所求斜率为 k=y|x=2
椭圆方程的两边分别对 x 求导,有

x8+29ydydx=0

dydx=9x16y

代入 x=2,y=323
dydx|x=2=34

所以切线方程为
3x+4y83=0

ex2. 求 y=xsinx(x>0)的导数
先在等式两边取对

lny=sinxlnx

再同时对 x 求导,得
1yy=cosxlnx+sinx1xy=y(cosxlnx+sinxx)=xsinx(cosxlnx+sinxx)

所以对于 y=uv(u>) 的形式都可以用对数求导法

参数方程求导
若有参数方程

{x=φ(t)y=ψ(t)

t=φ1(x),所以得到复合函数 y=ψ[φ1(x)],有
dydx=dydtdtdx=dydt1dxdt=ψ(t)φ(t)

微分

罗尔中值定理
如果函数 f(x) 满足
(1) 在闭区间 [a,b] 上连续
(2) 在闭区间 (a,b) 内可导
(3) 在区间端点处的函数值相等,即 f(a)=f(b)
那么在 (a,b) 内至少有一点 ξ(a<ξ<b),使得 f(ξ)=0

拉格朗日中值定理
如果函数 f(x) 满足
(1) 在闭区间 [a,b] 上连续
(2) 在闭区间 (a,b) 内可导
那么在 (a,b) 内至少有一点 ξ(a<ξ<b),使得等式

f(b)f(a)=f(ξ)(ba)
成立
这个式子又可以写成
Δy=f(x+θΔx)Δx(0<θ<1)
所以这个定理又叫有限增量定理,上面的式子也称有限增量公式。这个定理还称微分中值定理

柯西中值定理
如果函数 f(x)F(x) 满足
(1) 在闭区间 [a,b] 上连续
(2) 在闭区间 (a,b) 内可导
(3) 对任一 x(a,b),F(x)0
那么在 (a,b) 内至少有一点 ξ,使得

f(b)f(a)F(b)F(a)=f(ξ)F(ξ)
成立

洛必达法则
1 : 设
(1) 当 xa 时,函数 f(x)F(x) 都趋于零
(2) 在点 a 的某去心邻域内,f(x)F(x) 都存在且 F(x)0
(3) limxaf(x)F(x)存在(或为无穷大)

limxaf(x)F(x)=limxaf(x)F(x)

2 : 设
(1) 当 x 时,函数 f(x)F(x) 都趋于零
(2) 当 |x|>N时,f(x)F(x) 都存在且 F(x)0
(3) limxf(x)F(x)存在(或为无穷大)

limxf(x)F(x)=limxf(x)F(x)

当然还有许多其他形式的未定式

ex1. 求 limx0+xnlnx(n>0)

limx0+xnlnx=limx0+lnxxn=limx0+1xnxn1=limx0+(xnn)=0

ex2. 求 limx0+xx
y=xx,取对数得 lny=xlnx

limx0+lny=limx0+(xlnx)=0y=elnylimx0+xx=limy=limelny=elimlny=e0=1

泰勒中值定理
一: 如果函数 f(x)x0 处具有 n 阶导数,那么存在 x0 的一个邻域,对于该邻域内的任一 x,有

f(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+Rn(x)
其中Rn(x)=o((xx0)n)
x0=0 的时候就是麦克劳林公式

二: 如果函数 f(x)x0 的某个邻域 U(x0) 内具有 (n + 1) 阶导数,那么对任一 xU(x0),有

f(x)=f(x0)+f(x0)(xx0)+f′′(x0)2!(xx0)2++f(n)(x0)n!(xx0)n+Rn(x)
其中Rn(x)=f(n+1)(ξ)(n+1)!(xx0)n+1

曲线的凹凸性
定义: 设 f(x) 在区间 I 上连续,如果对 I 上任意两点 x1,x2恒有

f(x1+x22)<f(x1)+f(x2)2
那么称 f(x) 在 I 上的图形是(向上)凹的(凹弧);如果恒有
f(x1+x22)>f(x1)+f(x2)2
那么称 f(x) 在 I 上的图形是(向上)凸的(凸弧)

定理: 设 f(x) 在 [a,b] 上连续,在 (a,b) 内具有一阶和二阶导数,那么
(1) 若在 (a,b) 内 f′′(x)>0,则 f(x) 在 [a,b] 上的图形是凹的
(2) 若在 (a,b) 内 f′′(x)<0,则 f(x) 在 [a,b] 上的图形是凸的

f(x) 在 (a,b) 内具有二阶导数,那么对于拐点f′′(x0)=0

曲率
弧微分公式:ds=1+y2dx
曲率:K=limΔs0|ΔαΔs|
直线上任意一点曲率为0
圆上任意一点曲率为 1r

积分

连续函数一定有原函数
如果一个函数有原函数那么它就有无穷多个原函数

常用积分公式 .
(1) kdx=kx+C
(2) xμdx=xμ+1μ+1+C(μ1)
(3) 1xdx=lnx+C
(4) axdx=axlna+C
(5) cosxdx=sinx+C
(6) sinxdx=cosx+C
(7) tanxdx=lncosx+C
(8) lnxdx=xlnxx+C

换元法

复合函数貌似没有统一的求积分公式QAQ

第一类换元法 :
f(u) 具有原函数, u=φ(x) 可导,则有换元公式

f[φ(x)]φ(x)dx=[f(u)du]u=φ(x)

ex1. 求 2xex2dx
u=x2

2xex2dx=euudx=eudu=ex2+C

第二类换元法 :
x=ψ(t) 是单调的可导函数,并且 ψ(t)0.又设 f[ψ(t)]ψ(t) 具有原函数,则有换元公式

f(x)dx=[f[ψ(t)]ψ(t)dt]t=ψ1(x)

分部积分法
分部积分公式:

uvdx=uvuvdx

也可以写成:
udv=uvvdu

不想写了QAQ

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

SPOJ LCS 最长公共子串 后缀自动机&后缀树(Ukkonen)

终于搞清楚了这两个恶心的数据结构。其实后缀树也不难写嘛。题目  给定两个字符串a和b,求在a和b中都有出现的连续子串的最长长度。样例输入alsdfkjfjkdsal fdjskalajfkdsla 样...

spoj LCS 【后缀自动机】

琦不会后缀自动机…… 是以前太浪了…… 所以所有东西都留到了noi前来学…… 马上狗牌退役了TAT(心塞qwq题目大意:给出两个串A,B,求A、B的最长公共子串对A建后缀自动机,然后用B去匹配,...

spoj LCS2 【后缀自动机】

好舍不得大家……心疼……题目大意:把上一题的两个串改成多个串对每一个串进行一次操作,记得把每个点的值传给自己的par 最后取个min就好了#include #include #include ...

【后缀自动机】SPOJ(LCS)[Longest Common Substring]题解

题目概述给出两个串A和B,求A和B的最长公共子串。解题报告这道题是SAM的经典应用,首先先提醒一下不要一看到LCS就想到最长公共子序列去了,这里是最长公共字串…… SAM真的是很神的字符串算法啊,不仅...

导数

不听讲遭报应了吧……

spoj 1811 LCS - Longest Common Substring (后缀自动机)

spoj 1811 LCS - Longest Common Substring 题意: 给出两个串S, T, 求最长公共子串。 限制: |S|, |T| 思路: dp O(...

导数与积分入门

这里讲了导数与积分的入门QAQ

漫步微积分十三——高阶导数

y=x4y=x^4的导数是y′=4x3y'=4x^3。但是4x34x^3依然可导,12x212x^2。用y′′y''表示,叫做原函数的二阶导。对二阶导y′′=12x2y''=12x^2求导得到三阶导y...

图说微积分(十)导数:定义

导数的定义:像

机器学习初步与微积分概率论-七月算法(julyedu.com)4 月机器学习算法班学习笔记

高等数学回顾 夹逼定理 泰勒公式 凸函数 概率论 商品推荐-惊喜度 常见分布统计量小结高等数学回顾夹逼定理泰勒公式从泰勒公式看熵和基尼系数的关系 凸函数 两个要点 1. 定义域是凸集 2. 函...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)