复数的基本概念

原创 2016年06月02日 09:59:22

概念

虚数单位:i2=1
复数的代数形式:z=a+bi
复数的模:|z|=|a+bi|=a2+b2
实部 a 虚部 b(没有i)
复数不能比较大小

复数的运算

加减:(a+bi)±(c+di)=(a±c)+(b±d)i
乘 : (a+bi)(c+di)=(acbd)+(bc+ad)i
除:a+bic+di=(a+bi)(cdi)(c+di)(cdi)=(ac+bd)+(bcad)ic2+d2
开方:
zn=r(cosθ+isinθ),则
z=rn[cos2kπ+θn+isin2kπ+θn] (k = 0,1,2…n - 1)
表示 n 个不同复数QAQ

常用算式

(1) 1i=i
(2) (1±i)2=±2i
(3) 1+i1i=i
(4) 1i1+i=i

共轭复数

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数。
表示为z¯(看掉那根横线就gg了啊
性质:
|a+bi|=|abi|
(a+bi)(abi)=a2+b2
和差积商的共轭等于共轭的和差积商

复数的辐角

复数可以写成:z=r(cosθ+isinθ)
θ 是 z 的辐角,记作:Arg(z),在 [0,2π) 的辐角称为辐角主值,记作:arg(z)
指数形式:z=r(cosθ+isinθ)=reiθ

欧拉恒等式

eix=cosx+isinx

x=π,这个式子就是
eπi+1=0

棣莫弗定理

设两个复数分别为:z1=r1(cosθ1+isinθ1)=r1eiθ1,z2=r2(cosθ2+isinθ2)=r2eiθ2,则:

z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)

因此 |z1z2|=r1r2,Arg(z1,z2)=Argz1+Argz2

版权声明:本文为博主原创文章,未经博主允许不得转载。

JavaScript复数类创建(转自JavaScript权威指南)

/* *Complex.js: *这个文件定义了Complex类,用来描述复数 */ /* *这个构造函数为它所创建的每个实例定义了实例字段r和i *这两个字段分别保存负数的实部和虚部 *...
  • u013745464
  • u013745464
  • 2014年03月05日 10:34
  • 1071

一步一步学习C++(类)之虚函数和纯虚数

1、 该函数必须与基类的虚函数有相同的名称 2、 该函数必须与基类的虚函数有相同的参数个数和相对应的参数类型。 3、 该函数必须与基类的虚函数有相同的返回值,或满足类型兼容规则的指针,引用...
  • xy010902100449
  • xy010902100449
  • 2015年04月09日 19:51
  • 1626

C语言中的复数

C语言中的复数操作   复数在数学运算中十分重要,在编写数值运算或者算法的时候,我们会用到复数这种概念。 那么,复数在C/C++语言中是如何表示的呢?我们接下来一一介绍。 C语言中复数    在数学中...
  • duandianR
  • duandianR
  • 2017年04月27日 11:10
  • 3209

虚数的意义,虚数到底是什么

四轴飞行姿态的解算需要用到虚数、四元数,无奈重温高等数学,BetterExplained上面有关于虚数的非常好的解释,很浅显易懂,转给大家参考。 四轴飞行姿态的解算需要用到虚数、四元数,无奈重温...
  • xitong2012
  • xitong2012
  • 2014年11月05日 22:08
  • 698

Java中基本数据类型和包装类

一 java内存分配这里只是在网上找的一些资料; Java 中的数据类型分为 1. 基本类型(原始数据类型) byte short int long float double ...
  • u010293702
  • u010293702
  • 2015年03月25日 14:52
  • 3206

树的定义及基本术语

树:是n(>=0)个结点的有限集,它或为空树(n=0);或为非空树,对于非空树T: (1)有且仅有一个称之为根的结点; (2)除根结点以外的其余节点可分为 m(m>0)互不相交的有限集T1,T...
  • crazylzxlzx
  • crazylzxlzx
  • 2016年08月02日 10:14
  • 511

二叉树的定义及基本操作

(1)定义二叉树的链式存储结构; (2)建立一颗二叉链表表示的二叉树; (3)对其进行前序,中序(非递归),后序输出。 (4)统计二叉树中叶子结点个数和度为2的结点个数。         ...
  • Best_CXY
  • Best_CXY
  • 2015年12月28日 22:24
  • 1033

《虚数的图解》

转载:阮一峰博客:http://www.ruanyifeng.com/home.html 一、什么是虚数? 首先,假设有一根数轴,上面有两个反向的点:+1和-1。 这根数轴的正向部分,可以绕原点旋...
  • Emperor_21AD_ShiDi
  • Emperor_21AD_ShiDi
  • 2016年11月09日 14:39
  • 379

队列的定义及其基本操作

队列的定义及其基本操作 队列的定义 顺序队列及其操作 循环队列及其操作 链队列及其操作 1.队列的定义队列是限制结点插入操作固定在一端进行,而结点的删除操作固定在另一端进行的线性表. 队列犹如一个两...
  • forwardyzk
  • forwardyzk
  • 2016年12月20日 23:52
  • 3148

Python Selenium 学习笔记(一)基本操作

Python是门挺强大的语言,同常见的C,Java,C#等有几点不同,一个是定义变量前不用定义类型,直接赋值就行,非常方便,另一个是没有begin,end,{,}这些麻烦的东西,回车空格就是这些东西的...
  • wangyutian2011
  • wangyutian2011
  • 2015年07月02日 13:28
  • 1328
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:复数的基本概念
举报原因:
原因补充:

(最多只允许输入30个字)