复数的基本概念

原创 2016年06月02日 09:59:22

概念

虚数单位:i2=1
复数的代数形式:z=a+bi
复数的模:|z|=|a+bi|=a2+b2
实部 a 虚部 b(没有i)
复数不能比较大小

复数的运算

加减:(a+bi)±(c+di)=(a±c)+(b±d)i
乘 : (a+bi)(c+di)=(acbd)+(bc+ad)i
除:a+bic+di=(a+bi)(cdi)(c+di)(cdi)=(ac+bd)+(bcad)ic2+d2
开方:
zn=r(cosθ+isinθ),则
z=rn[cos2kπ+θn+isin2kπ+θn] (k = 0,1,2…n - 1)
表示 n 个不同复数QAQ

常用算式

(1) 1i=i
(2) (1±i)2=±2i
(3) 1+i1i=i
(4) 1i1+i=i

共轭复数

当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数,虚部不等于0的两个共轭复数也叫做共轭虚数。
表示为z¯(看掉那根横线就gg了啊
性质:
|a+bi|=|abi|
(a+bi)(abi)=a2+b2
和差积商的共轭等于共轭的和差积商

复数的辐角

复数可以写成:z=r(cosθ+isinθ)
θ 是 z 的辐角,记作:Arg(z),在 [0,2π) 的辐角称为辐角主值,记作:arg(z)
指数形式:z=r(cosθ+isinθ)=reiθ

欧拉恒等式

eix=cosx+isinx

x=π,这个式子就是
eπi+1=0

棣莫弗定理

设两个复数分别为:z1=r1(cosθ1+isinθ1)=r1eiθ1,z2=r2(cosθ2+isinθ2)=r2eiθ2,则:

z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)]=r1r2ei(θ1+θ2)

因此 |z1z2|=r1r2,Arg(z1,z2)=Argz1+Argz2

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

angularjs基本概念全

  • 2015年10月28日 23:17
  • 2.55MB
  • 下载

网络基本概念之TCP, UDP, 单播(Unicast), 多播(组播)(Multicast)

这篇文章相当低级,但相当重要! 我们周围一切几乎都依赖于把事情抽象成低等级,并在某一点把它具体化,在一些设计概念中,接口层十分清晰并且目标很集中,应用程序不用考虑操作系统如何工作,操作系统也不用考...

网络体系结构和基本概念

  • 2014年11月05日 12:52
  • 602KB
  • 下载

面向对象c++的基本概念

  • 2015年11月07日 12:06
  • 66KB
  • 下载

TensorFlow学习笔记之——些常用基本概念与函数(详细)

本文主要对tf的一些常用概念与方法进行描述。

Oracle 11g RAC 基本概念

  • 2016年10月04日 03:28
  • 388KB
  • 下载

OLTP基本概念

  • 2016年09月16日 23:25
  • 2.59MB
  • 下载

Java基础之面向对象的基本概念(3--续)

Java基础之面向对象的基本概念(3--续)

GSM的基本概念及方法

  • 2013年04月12日 15:04
  • 201KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:复数的基本概念
举报原因:
原因补充:

(最多只允许输入30个字)