hadoop Federation(联邦)简介

原创 2016年05月31日 20:51:13

Federation即为“联邦”,该特性允许一个HDFS集群中存在多个NameNode同时对外提供服务,这些NameNode分管一部分目录(水平切分),彼此之间相互隔离,但共享底层的DataNode存储资源。

在hadoop1.x中HDFS的架构

文件的存储是放在块上的(Block Storage)
文件的元数据是放在namenode上的,只有一个Namespace(命名空间)。随着HDFS的数据越来越多,单个namenode的资源使用必然会达到上限,而且namenode的负载能力也会越来越高,限制HDFS的性能。

hadoop1.x架构

hdfs主要有两层架构:
1.命名空间(namespace)
由目录、文件、块组成。
支持创建、删除、修改、列举命名空间相关系统的操作。
2.块的存储
管理Block(在datanode中的完成)
通过控制注册以及阶段性的心跳,来保证datanode的正常运行。
运行块的信息报该哦啊,维护块的位置信息。
创建、删除、修改、查询块。
管理副本和副本位置
存储:提供对块的读写(由namenode提供)

单namenode架构的局限性

1.NameSpace(命名空间的限制)
由于Namenode再内存中存储所有的元数据(metadata),因此单个Namenode所能存储的对象(文件+块)数目收到Namenode所在JVM的heap(堆) size的限制。50G的heap能够存储20亿个对象,这20亿个对象支持4000个datanode,12PB的存储(假设文件爱呢平均大小为40MB)。随着数据的飞速增长,存储的需求也随之增长。单个datanode从4T增长到36T,集群的尺寸增长到8000个datanode。存储的需求从12PB增长到大于100PB。(内存的限制)
2.性能的瓶颈
由于是单个Namenode的HDFS架构,因此整个HDFS文件系统的吞吐量受限于单个NameNode的吞吐量。
3.隔离问题
由于HDFS仅有一个Namenode,无法隔离各个程序,因此HDFS上的一个实验程序很可能影响整个HDFS上运行的程序。
4.集群的可用性
在只有一个Namenode的HDFS中,此Namenode的宕机无疑会导致整个集群的不可用。(低可用性)
5.Namespace和Block Management的紧密耦合
Hadoop 1.x在Namenode中的Namespace和Block Management组合的紧密耦合关系会导致如果想要实现另外一套Namenode方案比较困难,而且也限制了其他想要直接使用块存储的应用。

为什么纵向扩展目前的NameNode不可行?

比如将NameNode的Heap空间扩大到512GB。
1.启动问题,启动花费时间太长。(Hadoop 1.x具有50GB Heap Namenode的HDFS启动一次大概需要30分钟到2小时)
2.Namenode在Full GC时,如果发生错误将会导致整个集群宕机。
3.对大JVM Heap进行调试比较困难。优化Namenode的内存使用性价比比较低。

hadoop2.x

增加了Federation的概念

为什么要引入Federation

1.采用Federation的最主要的原因是简单,Federation能够快速的解决大部分单Namenode的问题。
2.Federation是简单鲁棒的设计,由于联邦中各个Namenode之间是相互独立的。Federation整个核心设实现大概用了3.5个月。大部分改变是在Datanode、Config和Tools,而Namenode本身的改动非常少,这样Namenode的原先的鲁棒性不会受到影响。比分布式的Namenode简单,虽然这种事先的扩展性比起真正的分布式的Namenode要小些,但是可以迅速满足需求。
3.Federation良好的向后兼容性,已有的单Namenode的部署配置不需要任何改变就可以继续工作。

Federation架构设计

Federation的架构设计

  • 为了水平扩展Namenode,Federation使用了多个独立的Namenode/NameSpace。这些Namenode之间是联合的,也就是说,他们之间相互独立且不需要互相协调,各自分工,管理自己的区域。分布式的datanode被用作通用的数据块存储存储设备。每个DataNode要向集群中所有的namenode注册,且周期性的向所有namenode发送心跳和块报告,并执行来自所有namenode的命令。
  • 所谓Block Pool(块池)就是属于单个命名空间的一组block(块)。
  • 每一个DataNode为所有的Block Pool存储块。DataNode是一个物理概念,而Block
    Pool是一个重新将block划分的逻辑概念。同一个datanode中可以存着属于多个Block Pool的多个块。
    • Block Pool允许一个命名空间在不通知其他命名空间的情况下为一个新的block创建Block ID。同时一个Namenode失效不会影响其下Datanode为其他Namenode服务。
    • 每个Block Pool内部自治,也就是说各自管理各自的block,不会与其他Block Pool交流。一个Namenode挂掉了,不会影响其他NameNode。
    • 当DN与NN建立联系并开始会话后自动建立Block Pool。每个block都有一个唯一的表示,这个表示我们称之为扩展块ID,在HDFS集群之间都是惟一的,为以后集群归并创造了条件。
    • DN中的数据结构都通过块池ID索引,即DN中的BlockMap,storage等都通过BPID索引。
    • 某个NN上的NameSpace和它对应的Block Pool一起被称为NameSpace Volume。它是管理的基本单位。当一个NN/NS被删除后,其所有DN上对应的Block Pool也会被删除。当集群升级时,每个NameSpace Volume作为一个基本单元进行升级。

Federation HDFS与Hadoop 1.xHDFS的比较

  • Hadoop 1.xHDFS只有一个命名空间(Namespace),它使用全部的块。Federation HDFS中有多个独立的命名空间,并且每一个命名空间使用一个块池。
  • Hadoop 1.xHDFS中只有一组块。而Federation HDFS中有多组独立的块。块池就是属于同一个命名空间的一组块。
  • Hadoop 1.x HDFS由一个Namenode和一组DataNode组成。而Federation HDFS由多个Namenode和一组DataNode,每一个datanode回味多个块池存储块。

datanode改进

  • 在datanode中,对应于每个Namenode都有一条相应的县城
  • 每个DN回去每一个NN注册,并且周期性的给所有的NN发送心跳及DN的使用报告。
  • DN还会给NN发送其所在的块池的快报告
  • 由于有多个NN同时存在,因此任何一个NN都可以随时动态加入、删除和更新。

Namespace Volume(命名空间卷)

  • 一个Namespace和它的块池合并在一起成为Namespace Volume。
  • Namespace Volume是一个独立完整的管理单元。
  • 当一个Namenode/Namespace被删除,与之相对应的块池也被删除。
  • 在升级时,每一个Manespace Volume也会整体作为一个单元。

ClusterId

  • 在HDFS Federation中添加了ClusterID用来区分汲取中的每一个节点。
  • 当格式化一个Namenode时,这个Cluster Id会自动生成或者手动提供。
  • 在格式化统一集群中其他Namenode时会用到这个ClusterID。

Federation的主要优点

1.namespace是一个可扩展的,相当于namenode是一个分布式的。
2.性能提升了,操作不会由于一个namenode的吞吐量收到限制。
3.隔离性。每个namenode只管理一部分文件 。不同用户可以被namespace隔离。


感谢云帆大数据梦琪老师的讲解。

版权声明:

相关文章推荐

HDFS Federation(HDFS 联邦)(Hadoop2.3)

最早接触Federation这个词还是第一家公司用的DB2联邦数据库。 第一代Hadoop HDFS:   结构上由一个namenode和众多datanode组成。 ...

《hadoop进阶》基于hadoop和hive的微博热词跟踪系统

利用hadoop来做一个类似于微博热词的系统,涉及到了中文分词,hadoop的mr计算,hive创建分区表,以及jfreechart的可视化,欢迎吐槽

如何配置Hadoop2.0HDFS的HA以及联邦使用QJM

配置过程详述       大家从官网下载的apache hadoop2.2.0的代码是32位操作系统下编译的,不能使用64位的jdk。我下面部署的hadoop代码是自己的64位机器上重新编...

Zookeeper系列(一)

一、ZooKeeper的背景 1.1 认识ZooKeeper ZooKeeper---译名为“动物园管理员”。动物园里当然有好多的动物,游客可以根据动物园提供的向导图到不同的场馆观赏各种类型的动物...

HDFS Federation

HDFS联邦 本指南提供了一个HDFS联邦特性的综述,以及如何配置和管理联邦的集群。 背景 HDFS有两个主要的层次: 1.      Namespace a)      ...

数据集成之数据联邦(data federation)

数据联邦(data federation)数据联邦的概念数据联邦(也有翻译成数据联合)提供了一种创建对数据消费者(应用)角度看数据集成视图,数据逻辑看上去存在一个位置,但实际的物理位置却可能在多个数据...

intellij idea本地开发调试hadoop的方法

转载请注明出处: http://blog.csdn.NET/programmer_wei/article/details/45286749 我的intellij idea版本是14,Ha...

IntelliJ IDEA搭建Hadoop开发环境

前言        这是关于Hadoop的系列文章。 Hadoop基本概念指南 Eclipse搭建Hadoop开发环境二三事 IntelliJ IDEA搭建Hadoop开发环境...

Hadoop Intellij IDEA本地开发环境搭建

首先我们需要新建一个java工程用于开发Mapper与Reducer,同时我们也需要导入hadoop的依赖包,这些包可以在hadoop的 share/hadoop 目录下找到,你可以把这些包单独取出来...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)