图的邻接表 表示 DFS 和BFS C++实现

原创 2016年05月30日 16:33:18
/*
* File name  :   Lgraph.cpp
* Function   :   图的学习, 邻接表   深度优先遍历和广度优先遍历        C++实现
* Created on : 2016年5月30日
* Author     : beijiwei@qq.com
* Copyright  : 欢迎大家和我一起交流学习,转载请保持源文件的完整性。
任何单位和个人不经本人允许不得用于商业用途

input:
5 6 0
A 0 B 1 2
A 0 C 2 5
A 0 E 4 3
B 1 D 3 4
D 3 E 4 2
E 4 C 2 5


*/
#include <cstdio>
#include <iostream>
#pragma warning(disable:4996)

using namespace std;


#define MAX 10

typedef struct EdgeNode{
     char start_name;
     char end_name;
     int  start;
     int end;
     int weight;
     struct EdgeNode  * next;
}EdgeNode;

typedef struct 
{
    int  vertex_num;
    int  edge_num;
    int  graph_type;
    EdgeNode *   List[MAX];
    int  mark[MAX];
}Lgraph;
/*************************************************************************************************/
typedef struct  {
    int  store[MAX * MAX];
    int head;
    int tail;
}Squeue;

void queue_init(Squeue & Q)
{
    Q.head=0;
    Q.tail=0;
}

void queue_in(Squeue & Q, int   V)
{
    if( Q.tail == MAX * MAX )
        cout<<"out of index"<<endl;
    Q.store[ Q.tail ++]=V;
}

int queue_out(Squeue &Q)
{
    if( Q.tail==Q.head)
        cout<<"empty"<<endl;
    return Q.store[ Q.head++];
}

bool queue_is_empty(Squeue &Q)
{
    return ( Q.tail==Q.head) ? true : false;
}
/**************************************************************************************************/
void  create_graph( Lgraph & G);
void  graph_display( Lgraph & G);

void gbfs( Lgraph & G);
void gdfs(Lgraph & G);


int main(int argc, char** argv)
{
    freopen("input.txt","r",stdin);
    Lgraph G;
    create_graph( G);

    graph_display(G);

    gdfs(G);

    gbfs(G);
    return 0;
}

void create_graph( Lgraph & G)
{
    cout<<"请输入图的顶点个数 和 边的个数: "<<endl;
    cin>>G.vertex_num>>G.edge_num;
    cout<<"请输入图的类型:  0无向图    1有向图"<<endl;
    cin>>G.graph_type;

    for(int i=0; i < G.vertex_num; i++)
    {
        G.List[i]=NULL;
    }

    for( int i=0; i < G.edge_num ; i++)
    {
        int start,end,weight;
        char start_name,end_name;

         EdgeNode * tmp= new EdgeNode;
         cout<<"请输入第"<<i<<"条边的起点名字,起点序号,终点名字,终点序号和权值"<<endl;
         cin>>start_name   >>start  >>end_name>>end>>weight;

         tmp->start=start;
         tmp->start_name=start_name;
         tmp->end=end;
         tmp->end_name=end_name;
         tmp->weight=weight;
         tmp->next=G.List[ start ];

         G.List[ start ]=tmp;

         if(  G.graph_type==0 )//是 无向图, 则 插入到终点的链表中
         {
                EdgeNode * T= new EdgeNode;
        
                T->start=end;
                T->start_name=end_name;
                T->end=start;
                T->end_name=start_name;
                T->weight=weight;
                T->next=G.List[ end ];
                G.List[ end ]=T;
         }
    }

}

void  graph_display( Lgraph & G)
{
    EdgeNode * tmp;
    for(int i=0; i<G.vertex_num;i++)
    {
        tmp=G.List[i];
        if(tmp == NULL)
            continue;
        cout<<"顶点"<<i<<"名字是: "<<tmp->start_name<<"  ,  相邻顶点有:"<<endl;
        while( tmp)
        {
            cout<<"      "<<tmp->end_name<<"  ,  该边权重是"<<tmp->weight<<endl;
            tmp=tmp->next;
        }
    }
}

void dfs(Lgraph & G, int k)
{
    int end;
    G.mark[k]=1;
    cout<<G.List[k]->start_name<<"\t";
    end=G.List[k]->end;
    if(   G.mark[end]==0)
    {
        dfs(G,end);
    }

}

void gdfs(Lgraph & G)
{
    cout<<"图的深度优先遍历 : "<<endl;

    for( int i=0; i< G.vertex_num; i++)
    {
        G.mark[i]=0;
    }

    for(int k=0; k < G.vertex_num; k++)
    {
        if( G.mark[k]==0)
        {
            dfs(G,k);
        }
    }
    cout<<endl;
}


void gbfs( Lgraph & G)
{
      cout<<"图的广度优先遍历 : "<<endl;

    for( int i=0; i< G.vertex_num; i++)
    {
        G.mark[i]=0;
    }

     for(int k=0; k < G.vertex_num; k++)
    {
        if( G.mark[k]==0)
        {
            G.mark[k]=1;
             cout<<G.List[k]->start_name<<"\t";
             Squeue Q;
             queue_init(Q);

             queue_in(Q, k);

             while( queue_is_empty(Q)==0 )
             {
                int i=queue_out(Q) ;
                int next=G.List[i]->end;
                if(  G.mark[next]==0 )
                {
                        cout<<G.List[next]->start_name<<"\t";
                        G.mark[next]=1;
                        queue_in(Q,next);
                }
             }

        }
    }
    cout<<endl;

}

版权声明:本文为博主原创文章,未经博主允许不得转载。

图的邻接矩阵表示 DFS 和BFS C++实现

/* * File name : graph.cpp * Function : 图的学习, 邻接矩阵 深度优先遍历和广度优先遍历 C++实现 * Created on : 20...

c++中图的遍历,dfs和bfs的简单实现

c++中关于图的遍历的算法,bfs和dfs的基本实现

数据结构:图(邻接表存储 c++实现)

#include #include #include using namespace std; #define MAXVEX 10 #define INFINITY 0XFFFFFFFF #d...

Delphi7高级应用开发随书源码

  • 2003年04月30日 00:00
  • 676KB
  • 下载

<C/C++图>图的邻接表存储(C++模板实现)

一,邻接表表示法 图的邻接矩阵存储方法跟树的孩子链表示法相类似,是一种顺序分配和链式分配相结合的存储结构。邻接表由表头结点和表结点两部分组成,其中图中每个顶点均对应一个存储在数组中的表头结点。如这个...

C++图:极简版的图类(邻接链表)

建立一个(极简版的)图类(邻接链表)。

数据结构与算法——图的邻接表表示法类的C++实现

数据结构与算法——图的邻接表表示法类的C++实现

邻接表 实现图的遍历 C++

#include #include using namespace std; const int MaxSize = 5; struct ArcNode //边表节点 { int adj...

数据结构之图(邻接表存储,DFS和BFS遍历)

以下代码创建的图是无向,无权图,并且使用邻接表表示图。部分代码参考严蔚敏的数据结构。 一:main部分 #include #include using namespace std; struct...
  • LaoJiu_
  • LaoJiu_
  • 2015年12月23日 21:28
  • 6489

C++ 图结构邻接表简单实现

参照严蔚敏老师的《数据结构》一书,第7章实现 图结构的邻接表实现方式 表节点: 邻接点域(adjvex),链域(nextarc),数据域(info)。 头结点: 顶点信息(data),链域(...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:图的邻接表 表示 DFS 和BFS C++实现
举报原因:
原因补充:

(最多只允许输入30个字)