认识A*算法

原创 2007年09月19日 15:47:00
总结以下几点(F = G + H):
● A*/DFS/BFS都是对状态空间进行遍历的方法,区别在于前者通过估价函数H进行有选择的遍历。
   可以这么说,当状态空间非常大的时候可以考虑用A*,只要能找到h就行
● A*更新方式与DJ非常接近
● A*从已访问结点中选取F最小的结点作为下一次的扩展的起点
● 假设评价函数时间复杂度为f(n),设路径长度为n,那么总是时间复杂度 为O(n) * f(n)
● G可以是从起点到当前结点的层数,也可以是像示例中10/14等权值
● H是估价函数,即从当前结点到终点的花费。示例中的H很简单,只是H=dx+dy
● 选取F最小结点的方法:二叉堆,插入log(n)
     btw:二叉堆对于“在n个数据中选出前x个”需求时特别有效,当然在x<<n时效果更明显。
● A*本身的结构很清晰,实现也比较简单。核心部分就是寻找有效合理的估价函数H,这也是A*算法的价值所在。

参考资料:
[1] A* Pathfinding for beginners
http://dev.gameres.com/Program/Abstract/Arithmetic/A%20Pathfinding%20for%20Beginners.htm
[2] A*高效搜索算法
http://blog.programfan.com/article.asp?id=18471
[3] 深入A*算法
http://creativesoft.home.shangdu.net/AStart2.htm

下面是来自[百度百科]对A*介绍:
A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
公式表示为:        f(n)
=g(n)+h(n), 
f(n) 是节点n从初始点到目标点的估价函数,
g(n) 是在状态空间中从初始节点到n节点的实际代价,
h(n)是从n到目标节点最佳路径的估计代价。

保证找到最短路径(最优解的)条件,关键在于估价函数h(n)的选取:
1)估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。但能得到最优解。
2)如果 估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。

估价值与实际值越接近,估价函数取得就越好。
例如对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即f
=g(n)+sqrt((dx-nx)*(dx-nx)+(dy-ny)*(dy-ny));这样估价函数f在g值一定的情况下,会或多或少的受估价值h的制约,节点距目标点近,h值小,f值相对就小,能保证最短路的搜索向终点的方向进行。明显优于Dijstra算法的毫无无方向的向四周搜索。


A*算法————M个传教士和N个野人
一. 问题描述
有M个传教士和N个野人来到河边准备渡河,河岸有一条船,每次至多可供k人乘渡。任何时刻在河的两岸以及船上的野人数目总是不超过传教士的数目。
二. 问题分析
本问题采用A
*算法求解,解答的关键与难点如下:
1. 评估函数的建立。评估函数为f=h+d=M+N-2*B+d.。
M表示左岸的传教士的人数,N表示左岸野人的数目,B取值为0或1 。1表示船在左岸,
0 表示船在右岸。d 表示节点的深度。
下面我们来证明h(n)=M
+C-2B是满足A*条件的。
   我们分两种情况考虑。先考虑船在左岸的情况。如果不考虑限制条件,也就是说,船一次可以将三人从左岸运到右岸,然后再有一个人将船送回来。这样,船一个来回可以运过河2人,而船仍然在左岸。而最后剩下的三个人,则可以一次将他们全部从左岸运到右岸。所以,在不考虑限制条件的情况下,也至少需要摆渡[(M
+N-3)/2]*2+1次。其中分子上的"-3"表示剩下三个留待最后一次运过去。除以"2"是因为一个来回可以运过去2人,需要[(M+N-3)/2]个来回,而"来回"数不能是小数,需要向上取整,这个用符号[ ]表示。而乘以"2"是因为一个来回相当于两次摆渡,所以要乘以2。而最后的"+1",则表示将剩下的3个运过去,需要一次摆渡。
化简有: M
+N-2
   再考虑船在右岸的情况。同样不考虑限制条件。船在右岸,需要一个人将船运到左岸。因此对于状态(M,N,
0)来说,其所需要的最少摆渡数,相当于船在左岸时状态(M+1,N,1)或(M,N+11)所需要的最少摆渡数,再加上第一次将船从右岸送到左岸的一次摆渡数。因此所需要的最少摆渡数为:(M+N+1)-2+1。其中(M+N+1)的"+1"表示送船回到左岸的那个人,而最后边的"+1",表示送船到左岸时的一次摆渡。
化简有:(M
+N+1)-2+1=M+N。
   综合船在左岸和船在右岸两种情况下,所需要的最少摆渡次数用一个式子表示为:M
+N-2B。其中B=1表示船在左岸,B=0表示船在右岸。
  由于该摆渡次数是在不考虑限制条件下,推出的最少所需要的摆渡次数......
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

图像注册算法一点认识

  • 2008-12-09 14:44
  • 522KB
  • 下载

对Adaboost提升算法的一点儿认识

1.Adaboost算法的思想:          Adaboost算法基于的思想有点儿“三个臭皮匠顶个诸葛亮”的味道:我们在处理复杂任务时,将多位专家的判断进行适当的综合所得到的判断,要比其中任一...

关于冒泡排序算法的初学错误认识

关于冒泡排序,我觉得是初学C语言时再也熟悉不过的基本排序算法了,还记得在C语言课上老师“声情并茂”地讲着这个是考试的重点内容。刚开始学的人都以为这是一个再也简单不过的算法了,无非就是两个for循环嵌套...

认识OAuth签名使用的HMACSHA1哈希算法

来源:http://blog.unvs.cn/archives/oauth-hmacsha1-sign.html 开始着手QQ OAuth1.0 接口的开发,第一步是请求临时未授权的Reques...

关于RBM中k步对比散度算法CDK的认识

k步对比散度算法

认识JVM--第一篇-对象分配&回收算法

本来标题党想写成《深入JVM》,不过不太敢写,我想一小篇博客我想还不足以说明JVM,在本文中,会就我所知给大家介绍JVM的很多内部知识,概念会相对较粗,因为太细的内容要写,这里肯定写不出来;本文主要偏...

对于Mahout__"推荐算法"的初步认识(2)

首先,随手记下看到的Mahout

认识一切皆对象(everything is object)和 算法+数据结构=程序

终于决定好好写写技术博客了,以前写过几篇也都删了(鄙视下自己),希望自己这次能从一而终!            程序界都流传着一个公式:算法+数据结构=程序。我敢说任何初入程序开发的程序员们,都...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)