奇偶排序,或奇偶换位排序,或砖排序,是一种相对简单的排序算法,最初发明用于有本地互连的并行计算。这是与冒泡排序特点类似的一种比较排序。
该算法中,通过比较数组中相邻的(奇-偶)位置数字对,如果该奇偶对是错误的顺序(第一个大于第二个),则交换。下一步重复该操作,但针对所有的(偶-奇)位置数字对。如此交替进行下去。
处理器数组的排序
在并行计算排序中,每个处理器对应处理一个值,并仅有与左右邻居的本地互连。所有处理器可同时与邻居进行比较、交换操作,交替以奇-偶、偶-奇的顺序。该算法由Habermann在1972年最初发表并展现了在并行处理上的效率。
该算法可以有效地延伸到每个处理器拥有多个值的情况。在Baudet–Stevenson奇偶合并分区算法中,每个处理器在每一步对自己所拥有的子数组进行排序,然后与邻居执行合并分区或换位合并。
Batcher奇偶归并排序
Batcher奇偶归并排序是一种相关但更有效率的排序算法,采用比较-交换和完美-洗牌操作。
Batcher的方法在拥有广泛互连的并行计算处理器上效率不错。
最差时间复杂度 | ![]() |
---|
奇偶排序动态图:
代码实现:
package com.baobaotao.test;
/**
* 排序研究
* @author benjamin(吴海旭)
* @email benjaminwhx@sina.com / 449261417@qq.com
*
*/
public class Sort {
/**
<span style="white-space:pre"> </span> * 奇偶排序
<span style="white-space:pre"> </span> * @param array
<span style="white-space:pre"> </span> */
public static void batcherSort(int[] array) {
int length = array.length ;
boolean flag = true ;
while(true) {
flag = true ;
for(int i=1;i<length-1;i+=2) {
if(array[i] > array[i+1]) {
swap(array, i, i+1) ;
flag = false ;
}
}
for(int i=0;i<length-1;i+=2) {
if(array[i] > array[i+1]) {
swap(array, i, i+1) ;
flag = false ;
}
}
if(flag) break ;
printArr(array) ;
}
}
/**
* 按从小到大的顺序交换数组
* @param a 传入的数组
* @param b 传入的要交换的数b
* @param c 传入的要交换的数c
*/
public static void swap(int[] a, int b, int c) {
int temp = 0 ;
if(b < c) {
if(a[b] > a[c]) {
temp = a[b] ;
a[b] = a[c] ;
a[c] = temp ;
}
}
}
/**
* 打印数组
* @param array
*/
public static void printArr(int[] array) {
for(int c : array) {
System.out.print(c + " ");
}
System.out.println();
}
public static void main(String[] args) {
int[] number={11,95,45,15,78,84,51,24,12} ;
batcherSort(number) ;
}
}
输出分析:
11 45 15 95 51 78 12 84 24
11 15 45 51 12 95 24 78 84
11 15 12 45 24 51 78 95 84
11 12 15 24 45 51 78 84 95
转载请注明:http://blog.csdn.net/benjamin_whx/article/details/42456755