关闭

数学图形公式

标签: 图形
985人阅读 评论(0) 收藏 举报
分类:

x2/a2 + y2/b2 = 1   //椭圆方程


2x/a2 + 2y/b2 ×y'x = 0   //两边同时求关于x的导数


y'x = -b2x/a2y   //立即根据点斜试求出椭圆上一点(x,y)的切线方程

 


 

 

双曲线,抛物线同理了...果然在抛物线焦点处发出的光经过反射后


平行于坐标轴

 


 

抛物线y2 = 2px(p > 0)的导数y'x = p/y,那法线k = -y/p


很好,很强大。应当先学求导数,然后再学习圆锥曲线。不然会死人的哦。

 

有时间拿贝赛尔曲线试验一下...


关于y = (sinx)tanx的求导方法就是:


lny = tanx(lnsinx) ///两边取e的对数,然后两边再取关于x的导数

 


 

y'x = [(secx)2 lnsinx + (tanx.cosx)/sinx](sinx)tanx



这种方法求比较复杂函数的导数的时候经常是比较爽的,速度超快,屡试不爽。好象是该用这词~~

 


 

那么y = ax的导数也有求解方法:

 


 

y = f(x) = ax那么x = f -1(y) = logay


x'y = 1/(ylna) //求x关于y的导数


y'x = ylna = axlna //源函数的导数和反函数的导数呈倒数关系,注

意x和y并没有交换位置

 

 


 

 

特别的当a = e时,y = ex的导数就是ex了,呵呵。以后公式忘记


了自己推公式。 

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1338850次
    • 积分:20803
    • 等级:
    • 排名:第364名
    • 原创:810篇
    • 转载:12篇
    • 译文:1篇
    • 评论:227条
    最新评论
    ATL/WTL
    Big Deal
    Book