BZOJ1593 [Usaco2008 Feb]Hotel 旅馆 线段树

Description
奶 牛们最近的旅游计划,是到苏必利尔湖畔,享受那里的湖光山色,以及明媚的阳光。作为整个旅游的策划者和负责人,贝茜选择在湖边的一家著名的旅馆住宿。这个 巨大的旅馆一共有N (1 <= N <= 50,000)间客房,它们在同一层楼中顺次一字排开,在任何一个房间里,只需要拉开窗帘,就能见到波光粼粼的湖面。 贝茜一行,以及其他慕名而来的旅游者,都是一批批地来到旅馆的服务台,希望能订到D_i (1 <= D_i <= N)间连续的房间。服务台的接待工作也很简单:如果存在r满足编号为r..r+D_i-1的房间均空着,他就将这一批顾客安排到这些房间入住;如果没有满 足条件的r,他会道歉说没有足够的空房间,请顾客们另找一家宾馆。如果有多个满足条件的r,服务员会选择其中最小的一个。 旅馆中的退房服务也是批量进行的。每一个退房请求由2个数字X_i、D_i 描述,表示编号为X_i..X_i+D_i-1 (1 <= X_i <= N-D_i+1)房间中的客人全部离开。退房前,请求退掉的房间中的一些,甚至是所有,可能本来就无人入住。 而你的工作,就是写一个程序,帮服务员为旅客安排房间。你的程序一共需要处理M (1 <= M < 50,000)个按输入次序到来的住店或退房的请求。第一个请求到来前,旅店中所有房间都是空闲的。

Input
* 第1行: 2个用空格隔开的整数:N、M

  • 第2..M+1行: 第i+1描述了第i个请求,如果它是一个订房请求,则用2个数字 1、D_i描述,数字间用空格隔开;如果它是一个退房请求,用3 个以空格隔开的数字2、X_i、D_i描述

Output
* 第1..??行: 对于每个订房请求,输出1个独占1行的数字:如果请求能被满足 ,输出满足条件的最小的r;如果请求无法被满足,输出0

Sample Input
10 6
1 3
1 3
1 3
1 3
2 5 5
1 6

Sample Output
1
4
7
0
5
HINT
Source
Gold

**题解:
用线段树维护每个区间的最大连续0的个数,当区间进行合并时,要另维护区间左连续零和右连续零的个数,再进行相加。入住操作相当于找第一个区间连续零个数大于k的,再进行区间赋值为1,退房操作相当于区间赋值为0。**

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
const int MAXN=50001;
struct Seg
{
    int l,r,s,lazy,lx,rx,f;
}Tree[MAXN<<2];
int n;
void Make_Tree(int x,int l,int r)
{
    Tree[x].l=l,Tree[x].r=r;
    if(l==r) {
        Tree[x].s=1;Tree[x].lazy=0;Tree[x].lx=Tree[x].rx=1;
        Tree[x].f=1;
        return;
    }
    int mid=(l+r)>>1;
    Make_Tree(x<<1,l,mid);
    Make_Tree(x<<1|1,mid+1,r);
    Tree[x].s=Tree[x].r-Tree[x].l+1;
    Tree[x].lx=Tree[x].rx=Tree[x].s;
} 
void pushdown(int x)
{
    int lc=x<<1,rc=x<<1|1;
    if(Tree[x].f==1) {
        Tree[x<<1].s=Tree[x<<1].lx=Tree[x<<1].rx=Tree[x<<1].r-Tree[x<<1].l+1;
        Tree[x<<1|1].s=Tree[x<<1|1].lx=Tree[x<<1|1].rx=Tree[x<<1|1].r-Tree[x<<1|1].l+1;
        Tree[x].f=0;Tree[x<<1].f=1,Tree[x<<1|1].f=1;
    }
    else if(Tree[x].f==2) {
        Tree[x<<1].s=Tree[x<<1|1].s=0;
        Tree[x<<1].lx=Tree[x<<1|1].lx=0;
        Tree[x<<1].rx=Tree[x<<1|1].rx=0;
        Tree[x].f=0;Tree[x<<1].f=2,Tree[x<<1|1].f=2;
    }
}
void Modify(int x,int l,int r,int f)
{
    //cout<<x<<' '<<l<<' '<<r<<Tree[x].s<<endl;
    if(Tree[x].l==l&&Tree[x].r==r) {
        if(f==1) Tree[x].s=Tree[x].lx=Tree[x].rx=r-l+1,Tree[x].f=1;
        else if(f==2) Tree[x].s=Tree[x].lx=Tree[x].rx=0,Tree[x].f=2;
        return;
    }
    int mid=(Tree[x].l+Tree[x].r)>>1;
    pushdown(x);
    if(r<=mid) Modify(x<<1,l,r,f);
    else if(l>mid) Modify(x<<1|1,l,r,f);
    else Modify(x<<1,l,mid,f),Modify(x<<1|1,mid+1,r,f);
    Tree[x].s=max(Tree[x<<1].s,Tree[x<<1|1].s);
    Tree[x].s=max(Tree[x].s,Tree[x<<1].rx+Tree[x<<1|1].lx);
    Tree[x].lx=Tree[x<<1].lx;
    if(Tree[x].lx==Tree[x<<1].r-Tree[x<<1].l+1) Tree[x].lx+=Tree[x<<1|1].lx;
    Tree[x].rx=Tree[x<<1|1].rx;
    if(Tree[x].rx==Tree[x<<1|1].r-Tree[x<<1|1].l+1) Tree[x].rx+=Tree[x<<1].rx;
  //  cout<<'@'<<Tree[x].s<<' '<<x<<'@'<<endl;
}
int Query(int x,int k)
{
    if(Tree[x].l==Tree[x].r) return Tree[x].l;
    pushdown(x);
    int mid=(Tree[x].l+Tree[x].r)>>1;
    if(Tree[x<<1].s>=k) return Query(x<<1,k);
    else if(Tree[x<<1].rx+Tree[x<<1|1].lx>=k) return mid-Tree[x<<1].rx+1;
    else return Query(x<<1|1,k);
}
void check()
{
    int i,j;
    for(i=1;i<=n*2;i++)
    cout<<Tree[i].l<<" "<<Tree[i].r<<" "<<Tree[i].s<<" "<<Tree[i].lx<<" "<<Tree[i].rx<<" "<<Tree[i].f<<endl;
}
int main(int argc, char *argv[])
{
    int i,j,op,x,y,m;
    scanf("%d%d",&n,&m);
    Make_Tree(1,1,n);
    for(i=1;i<=m;i++)
    {
        scanf("%d",&op);
        if(op==1) {
            scanf("%d",&x);
            if(Tree[1].s<x) printf("0\n");
            else {
                int ans=Query(1,x);
                printf("%d\n",ans);
                Modify(1,ans,ans+x-1,2);
            }
        }
        else {
            scanf("%d%d",&x,&y);
            Modify(1,x,x+y-1,1);
        }
    }
    return 0;
}
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值