Java SE5的java.util.concurrent包中的执行器(Executor)将为你管理Thread对象,从而简化了并发编程。Executor在客户端和执行任务之间提供了一个间接层,Executor代替客户端执行任务。Executor允许你管理异步任务的执行,而无须显式地管理线程的生命周期。Executor在Java SE5/6中时启动任务的优选方法。Executor引入了一些功能类来管理和使用线程Thread,其中包括线程池,Executor,Executors,ExecutorService,CompletionService,Future,Callable等
创建线程池
Executors类,提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。
public static ExecutorService newFixedThreadPool(int nThreads)
创建固定数目线程的线程池。
public static ExecutorService newCachedThreadPool()
创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。
public static ExecutorService newSingleThreadExecutor()
创建一个单线程化的Executor。
public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)
创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。
见类图,接口Executor只有一个方法execute,接口ExecutorService扩展了Executor并添加了一些生命周期管理的方法,如shutdown、submit等。一个Executor的生命周期有三种状态,运行 ,关闭 ,终止。
Callable,Future用于返回结果
Future<V>代表一个异步执行的操作,通过get()方法可以获得操作的结果,如果异步操作还没有完成,则,get()会使当前线程阻塞。FutureTask<V>实现了Future<V>和Runable<V>。Callable代表一个有返回值得操作。
实例:用ExecutorService 实现对一个大数组并行求和
package executor;
import java.util.*;
import java.util.concurrent.*;
/*
* 并行计算求和.
* 本例中,把一个整数数组的求和分解到每个线程中,每个线程求该数值的部分和,
* 然后主程序把各个和再次求和就能得到最后的数字。从这个架构上跟mapreduce有点神似。
*
*/
public class ExecutorServiceParalelSumdemo {
private int coreCpuNum;
private ExecutorService executor;
/*
* save the result of each thread's sum calculation
*
*/
private List<FutureTask<Long>> tasks = new ArrayList<FutureTask<Long>>();
public ExecutorServiceParalelSumdemo(){
coreCpuNum = Runtime.getRuntime().availableProcessors();
System.out.println("this host has "+coreCpuNum+ " CPU(s)");
//for before Java 8.0
//executor = Executors.newFixedThreadPool(coreCpuNum);
//this CPU parallelism API is Java8 or later ONLY
executor = Executors.newWorkStealingPool(coreCpuNum);
}
/*
* thread main body
*/
class CalculatorTask implements Callable<Long>{
int nums[];
int start;
int end;
public CalculatorTask(final int nums[],int start,int end){
this.nums = nums;
this.start = start;
this.end = end;
}
@Override
public Long call() throws Exception {
long sum =0;
for(int i=start;i<end;i++){
sum += nums[i];
}
return sum;
}
}
private long getFinalSum(){
long sum = 0;
System.out.println(tasks.size() + " future tasks in pool");
for(int i=0;i<tasks.size();i++){
try {
/*
* If this future's thread not return its result,
* get() will block here. So perf issue introduced.
* we can use CompletionService to solve this potential issue.
*/
sum += tasks.get(i).get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
return sum;
}
public long ParallelSum(int[] nums){
int start,end,increment;
// 根据CPU核心个数拆分任务,创建每个thread和对应的 FutureTask,并提交到ExecutorService中。
for(int i=0;i<coreCpuNum;i++) {
increment = (nums.length/coreCpuNum)+1;
start = i*increment;
end = start+increment;
if(end > nums.length){
end = nums.length;
}
//create thread tasks
CalculatorTask calculator = new CalculatorTask(nums, start, end);
//create each future result per thread task
FutureTask<Long> task = new FutureTask<Long>(calculator);
tasks.add(task);
if(!executor.isShutdown()){
//execute() can't return result
executor.submit(task);
}
}
return getFinalSum();
}
public void close(){
executor.shutdown();
}
}
在上述例子中,getResult()方法的实现过程中,迭代了FutureTask的数组,如果任务还没有完成则当前线程会阻塞,如果我们希望任意任务完成后就把其结果加到result中,而不用依次等待每个任务完成,可以使用CompletionService。
它与ExecutorService最主要的区别在于submit的task不一定是按照加入时的顺序完成的。CompletionService对ExecutorService进行了包装,内部维护一个保存Future对象的BlockingQueue。只有当这个Future对象状态是结束的时候,才会加入到这个Queue中,take()方法其实就是Producer-Consumer中的Consumer。它会从Queue中取出Future对象,如果Queue是空的,就会阻塞在那里,直到有完成的Future对象加入到Queue中。所以,先完成的必定先被取出。这样就减少了不必要的等待时间。
CompletionService版本的求和例子
package executor;
import java.util.*;
import java.util.concurrent.*;
public class CompletionServiceDemo {
/*
* 并行计算求和.
* 本例中,把一个整数数组的求和分解到每个线程中,每个线程求该数值的部分和,
* 然后主程序把各个和再次求和就能得到最后的数字。从这个架构上跟mapreduce有点神似。
*
*/
private int coreCpuNum;
private ExecutorService executor;
/*
* CompletionService与ExecutorService最主要的区别在于
*前者submit的task不一定是按照加入时的顺序完成的。CompletionService对ExecutorService进行了包装,
*内部维护一个保存Future对象的BlockingQueue。
*只有当这个Future对象状态是结束的时候,才会加入到这个Queue中,take()方法其实就是Producer-Consumer中的Consumer。
*它会从Queue中取出Future对象,如果Queue是空的,就会阻塞在那里,直到有完成的Future对象加入到Queue中。
*所以,先完成的必定先被取出。这样就减少了不必要的等待时间。
*
*/
/*
* CompletionService has a internal bloking queue to save the result of each
* thread's sum calculation. so List<FutureTask<Long>> tasks appears unnecessary now
*
*/
private CompletionService<Long> mcs;
/*
* save the result of each thread's sum calculation
*
*/
public CompletionServiceDemo(){
coreCpuNum = Runtime.getRuntime().availableProcessors();
System.out.println("this host has "+coreCpuNum+ " CPU(s)");
//for before Java 8.0
//executor = Executors.newFixedThreadPool(coreCpuNum);
//this CPU parallelism API is Java8 or later ONLY
executor = Executors.newWorkStealingPool(coreCpuNum);
mcs=new ExecutorCompletionService<>(executor);
}
/*
* thread main body
*/
class CalculatorTask implements Callable<Long>{
int nums[];
int start;
int end;
public CalculatorTask(final int nums[],int start,int end){
this.nums = nums;
this.start = start;
this.end = end;
}
@Override
public Long call() throws Exception {
long sum =0;
for(int i=start;i<end;i++){
sum += nums[i];
}
return sum;
}
}
private long getFinalSum(){
long sum = 0;
for(int i=0;i<coreCpuNum;i++){
try {
/*
* get one complete result from CompletionServer internal
* blocking queue
*/
sum += mcs.take().get();
} catch (InterruptedException e) {
e.printStackTrace();
} catch (ExecutionException e) {
e.printStackTrace();
}
}
return sum;
}
public long ParallelSum(int[] nums){
int start,end,increment;
// 根据CPU核心个数拆分任务,创建每个thread和对应的 FutureTask,并提交到ExecutorService中。
for(int i=0;i<coreCpuNum;i++) {
increment = (nums.length/coreCpuNum)+1;
start = i*increment;
end = start+increment;
if(end > nums.length){
end = nums.length;
}
//create thread tasks
CalculatorTask mthread = new CalculatorTask(nums, start, end);
if(!executor.isShutdown()){
mcs.submit(mthread);
}
}
return getFinalSum();
}
public void close(){
executor.shutdown();
}
}