如何用FineReport报表进行数据可视化分析?

原创 2015年07月07日 10:19:16

独立的数据毫无意义,能进行比较和分析的数据才是有价值的数据。在FineReport报表工具中,数据的录入和展示操作只是开始,之后的数据分析才是重头戏。那么在FineReport中经过怎样的配置才能进行数据分析?又怎么进行数据分析呢?

使用FineReport进行数据可视化分析非常简单,经过简单的配置,使用者只需在B/S端简单拖拽目标数据及相关维度,即可得到从不同维度分析的结果,提升数据可视化程度,帮助决策层做出准确的决策。同时降低了系统开发的定制化程度,极大地降低了系统开发者的维护成本。

B/S数据源配置

启动web服务器(FR工程部署在web服务器下,端口号为对应的web服务器端口号,如tomcat下,端口号为8080,如果未部署,端口号为FR内置服务器端口号8075,以下均以tomcat为例),用管理员账号登陆数据决策系统op=fs,即打开链接:http://localhost:8080/WebReport/ReportServer?op=fs登陆成功后,点击管理系统>B/S全局配置>数据配置,添加数据集分析数据源如“员工数量”,选择服务器数据集员工信息表。如下图:
数据可视化

注:数据源同时提供语意转换功能和表间自动关联功能。B/S数据源配置中的数据来源既可以是设计器中定义的数据连接,也可以是服务器数据集,服务器数据集的定义可参考文档服务器数据集。

添加数据分析表

新建B/S分析目录

在管理系统>报表管理中添加一个子节点B/S分析,详细步骤请查看添加报表目录

在B/S分析目录下添加数据分析

前面已经新建了B/S分析目录节点,下面需要在节点下新添加一个数据分析,详细步骤请查看添加数据分析,如下图,成功添加数据分析:员工信息表:
数据可视化

添加数据源

点开报表决策平台(op=fs)>B/S分析>员工信息表,给其添加新的数据分析,如下:
数据可视化
效果如下
数据可视化

主体设计

添加数据源之后,如上图所示,页面最右侧会会自动出现该数据源形成的一个表格,接下来,可在该页面上对新分析进行主体设计。
数据可视化分析

到这里,数据源和新建数据分析就已完成,接下来就是进行数据分析的具体操作,看如下几个文档示例。

数据分析维度示例

按部门,性别维度分析

各部门男女职工的分布,通过企业管理学理论,企业技术、工程、信息等偏技术型部门的男职员比例要稍大一些,客服、人力等服务型部门的女职员比例稍大一些,这样才有利于企业的发展。那么通过以下的分析,可以得到企业现状,发现技术部、工程部的女职员比例高于男职员,未来一段时间内,人事部在招聘上,人员多考虑男性,女职员可适当减少,如下图分析情况:
数据可视化分析

按部门、学历统计平均工资

分析各部门职工的学历及待遇情况,企业技术部门和信息部门职工的人员流动率最高,那么高层就需要分析在待遇这块是否为导致人员流动主要原因,跟行业普遍待遇对比,是否要做出调整待遇的决策。
数据可视化分析

按部门、年龄统计平均工龄情况

分析各部门职工的年龄情况。销售部的工作需要出差、开拓客户,上门拜访客户等,所以职员年龄在25-29岁居多,但是销售部职员年龄在30-34岁的只有一人,其他均为29岁以下的。一般来说,年龄较大的是有资历、有经验的总监级别,而销售总监的工作较忙,依据公司整体战略,规划公司销售系统的整体运营、业务方向,领导团队,所以资源分配有些欠妥。那么就要分析出,销售部门要把招聘销售总监放在首位,同时需要从销售经理中发展提拔一部分人起来。资源分配欠妥的还有工程部。
数据可视化分析

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

基于pandas和seaborn进行数据可视化以及相关性分析

本博客学习pandas数据结构和seabon,以kaggle数据集为例,完成数据可视化以及相关性分析。数据总共12列,其中Survived列为target属性(y属性)。加载原始数据pandas数据结...

利用Python对NBA SportUV数据进行可视化及分析

SportUV是2005年,由以色列计算机科学家Gal Oz和Miky Tamir 创立的,其实,最早这两位大牛是搞导弹跟踪和高级光学识别的……然后基于这个学识背景,他们专门创立了一套用于识别体育比赛...

绘图和可视化 《利用Python进行数据分析》第8章 读书笔记

绘图和可视化回归 第八章代码下载链接import matplotlib.pyplot as plt import numpy as np from numpy.random import randn ...

ActiveReports 报表应用教程 (14)---数据可视化

ActiveReports 中提供了丰富的数据可视化解决方案,用户可以将数据以图像化的方式进行显示,让报表数据更加形象且便于理解。在 ActiveReports 报表中提供了大多数常用的二维和三维图表...

实践案例 | 数据可视化报表应用

报表是一个企业数据分析管理的基本工具,尤其是银行、证券等“数据大户”,在报表的应用上有大量需求,也存在大量困扰。

数据分析FineReport优化报表取数

数据分析FineReport优化报表取数 1. 取数原理 设计器拼出最终的SQL,将SQL语句传给数据库,数据库执行,将数据返回给设计器。 由于计算过程首先要通过SQL语句从数据...

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据

Python进阶(三十九)-数据可视化の使用matplotlib进行绘图分析数据  matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)