机器学习十大经典算法支持向量机SVM(Support Vector Machine)(上篇)

概念:
通过构造一个分类函数或分类器的方法,该方法能把数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知数据。
**全名:**Support Vector Machine(支持向量机)
支持向量:支持或支撑平面上把两类类别划分开来的超平面的向量点。
机:一个算法
SVM是建立在统计学习理论的VC维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性之间寻求最佳折衷,以期获得最好的推广能力(或泛化能力)。
(下图分别展示的是在二维和三维空间中,对样本点进行线性分类的超平面)
这里写图片描
(1.我们首先定义正类、负类)
这里写图片描述
(2.要将这两类样本点分开,我们发现会有多条线型分割符合条件,我们要从中找到一条最优的分割面)
这里写图片描述
(3.其中一条满足每个样本点到分割面的距离最小)
这里写图片描述
(4.还有一条满足每个样本点到分割面的距离最大,这既是我们要求的)
这里写图片描述
(5.从图中可以看到,落在正类、负类分割面上的点被称为支持向量,顾名思义,由它们支撑起正类、负类分割面)
这里写图片描述
(6.下图分别展示了正类、负类分割面的抽象表示以及样本点分别属于正类、负类以及无法分类区域(当然我们在分类中要尽量避免样本落在其中的概率)的条件)
这里写图片描述
那么问题来了:
1. 如何求得最优的超平面g(x)?
2. 超平面最优的标准是什么?
3. 超平面g(x)=wx+b中的法向量w和截距b如何求得?
首先,我们引入两个基础概念作铺垫:函数间隔、几何间隔
这里写图片描述
这里写图片描述
这里写图片描述
不难得到,函数间隔与几何间隔有如下关系:
这里写图片描述
接下来我们要求得目标函数。
这里写图片描述这里写图片描述
于是问题便转化成了求这里写图片描述
这里写图片描述
很容易看出当||w||=0的时候就得到了目标函数的最小值。反映在图中,就是H1与H2两条直线间的距离无限大,所有样本点都进入了无法分类的灰色地带
所以我们想到了一个解决方法,那就是添加一个约束条件加以限制,也为以后朗格朗日乘子法求条件最优解奠定基础:

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值