关闭

第12周 项目1-图基本算法库

150人阅读 评论(0) 收藏 举报
/* 
* Copyright (c)2015,烟台大学计算机与控制工程学院 
* All rights reserved. 
* 文件名称:项目1.cpp 
* 作    者:毕梦楠 
* 完成日期:2015年11月20日 
* 版 本 号:v1.0 
 
* 问题描述:  定义图的邻接矩阵和邻接表存储结构,实现其基本运算,并完成测试。 


要求: 
1、头文件graph.h中定义相关的数据结构并声明用于完成基本运算的函数。对应基本运算的函数包括:

    void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
    void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
    void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
    void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
    void DispMat(MGraph g);//输出邻接矩阵g
    void DispAdj(ALGraph *G);//输出邻接表G
    
2、在graph.cpp中实现这些函数 

3、用main.cpp中的main函数中完成测试。 
 
* 输入描述: 无 
* 程序输出: 测试数据 
*/   


头文件:graph.h,包含定义图数据结构的代码、宏定义、要实现算法的函数的声明

代码如下:

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

#endif // GRAPH_H_INCLUDED


源文件:graph.cpp,包含实现各种算法的函数的定义

代码如下:

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}


main.cpp代码如下:

#include <stdio.h>
#include <malloc.h>
#include "graph.h"

int main()
{
    MGraph g1,g2;
    ALGraph *G1,*G2;
    int A[6][6]=
    {
        {0,5,0,7,0,0},
        {0,0,4,0,0,0},
        {8,0,0,0,0,9},
        {0,0,5,0,0,6},
        {0,0,0,5,0,0},
        {3,0,0,0,1,0}
    };

    ArrayToMat(A[0], 6, g1);  //取二维数组的起始地址作实参,用A[0],因其实质为一维数组地址,与形参匹配
    printf(" 有向图g1的邻接矩阵:\n");
    DispMat(g1);

    ArrayToList(A[0], 6, G1);
    printf(" 有向图G1的邻接表:\n");
    DispAdj(G1);

    MatToList(g1,G2);
    printf(" 图g1的邻接矩阵转换成邻接表G2:\n");
    DispAdj(G2);

    ListToMat(G1,g2);
    printf(" 图G1的邻接表转换成邻接邻阵g2:\n");
    DispMat(g2);
    printf("\n");
    return 0;
}


运行结果如下:

知识点总结:
  定义图的算法库。

 

0
0

猜你在找
【套餐】Hadoop生态系统零基础入门
【套餐】嵌入式Linux C编程基础
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【套餐】深度学习入门视频课程——唐宇迪
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】计算机视觉原理及实战——屈教授
【直播】机器学习之凸优化——马博士
【直播】机器学习&数据挖掘7周实训--韦玮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:13432次
    • 积分:780
    • 等级:
    • 排名:千里之外
    • 原创:67篇
    • 转载:0篇
    • 译文:0篇
    • 评论:3条
    最新评论