卷积神经网络(CNN)学习笔记2:举例理解

转载 2016年08月30日 21:28:57

下图是一个经典的CNN结构,称为LeNet-5网络


可以看出,CNN中主要有两种类型的网络层,分别是卷积层池化(Pooling)/采样层(Subsampling)。卷积层的作用是提取图像的各种特征;池化层的作用是对原始特征信号进行抽象,从而大幅度减少训练参数,另外还可以减轻模型过拟合的程度。

卷积层

卷积层是卷积核在上一级输入层上通过逐一滑动窗口计算而得,卷积核中的每一个参数都相当于传统神经网络中的权值参数,与对应的局部像素相连接,将卷积核的各个参数与对应的局部像素值相乘之和,(通常还要再加上一个偏置参数),得到卷积层上的结果。如下图所示。


下面的动图能够更好地解释卷积过程:


池化/采样层

通过卷积层获得了图像的特征之后,理论上我们可以直接使用这些特征训练分类器(如softmax),但是这样做将面临巨大的计算量的挑战,而且容易产生过拟合的现象。为了进一步降低网络训练参数及模型的过拟合程度,我们对卷积层进行池化/采样(Pooling)处理。池化/采样的方式通常有以下两种:

  • Max-Pooling: 选择Pooling窗口中的最大值作为采样值;
  • Mean-Pooling: 将Pooling窗口中的所有值相加取平均,以平均值作为采样值; 

如下图所示。


LeNet-5网络详解

以上较详细地介绍了CNN的网络结构和基本原理,下面介绍一个经典的CNN模型:LeNet-5网络

其中原始输入图为32*32,卷积核为5*5,则可得C1层的特征图大小为(32-5+1)*(32-5+1)=28*28










转载来源

卷积神经网络之二:实例及源码示例笔记

文字识别系统LeNet-5     下面,有必要来解释下上面这个用于文字识别的LeNet-5深层卷积网络。       1. 输入图像是32x32的大小,局部滑动窗的大小是5x5的,由于不考...
  • philosophyatmath
  • philosophyatmath
  • 2015年02月14日 22:08
  • 3433

卷积神经网络CNN原理——结合实例matlab实现

卷积神经网络CNN是深度学习的一个重要组成部分,由于其优异的学习性能(尤其是对图片的识别)。近年来研究异常火爆,出现了很多模型LeNet、Alex net、ZF net等等。由于大多高校在校生使用ma...
  • u010540396
  • u010540396
  • 2016年10月22日 21:32
  • 20689

深度学习与计算机视觉系列(10)_细说卷积神经网络

前面九讲对神经网络的结构,组件,训练方法,原理等做了介绍。现在我们回到本系列的核心:计算机视觉,神经网络中的一种特殊版本在计算机视觉中使用最为广泛,这就是大家都知道的卷积神经网络。卷积神经网络和普通的...
  • yaoqiang2011
  • yaoqiang2011
  • 2016年01月19日 19:27
  • 46543

深度学习卷积神经网络大事件一览

深度学习(DeepLearning)尤其是卷积神经网络(CNN)作为近几年来模式识别中的研究重点,受到人们越来越多的关注,相关的参考文献也是层出不穷,连续几年都占据了CVPR的半壁江山,但是万变不离其...
  • u013088062
  • u013088062
  • 2016年04月11日 08:20
  • 20139

TensorFlow的卷积神经网络例子解析

TensorFlow教程地址:https://www.tensorflow.org/tutorials/mnist/pros/ 讲的是经典的机器学习问题MNIST。 使用卷积神经网络进行训练。载入...
  • dchen1993
  • dchen1993
  • 2016年12月22日 15:19
  • 4004

tensorflow学习笔记五:mnist实例--卷积神经网络(CNN)(Deep MNIST for Experts)

mnist的卷积神经网络例子和上一篇博文中的神经网络例子大部分是相同的。但是CNN层数要多一些,网络模型需要自己来构建。 程序比较复杂,我就分成几个部分来叙述。 首先,下载并加载数据: impo...
  • xiaopihaierletian
  • xiaopihaierletian
  • 2017年03月13日 19:14
  • 1137

深度学习之卷积神经网络CNN及tensorflow代码实现示例详细介绍

一、CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的。当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的...
  • lyc_yongcai
  • lyc_yongcai
  • 2017年06月14日 15:27
  • 2021

卷积神经网络(CNN)新手指南

卷积神经网络(Convolutional Neural Network,CNN)新手指南 引言 卷积神经网络:听起来像是生物与数学还有少量计算机科学的奇怪结合,但是...
  • tealex
  • tealex
  • 2016年07月30日 22:16
  • 3923

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

1. 概述         回想一下BP神经网络。BP网络每一层节点是一个线性的一维排列状态,层与层的网络节点之间是全连接的。这样设想一下,如果BP网络中层与层之间的节点连接不再是全连接,而是局部连...
  • u010555688
  • u010555688
  • 2014年04月25日 17:24
  • 28659

深度学习: sliding window (滑动窗口)

Structure滑动窗口的 receptive field (感受野) 是一个 三维的方块 : 通过在水平和垂直方向的平移,从而实现通过 小滑窗 卷积 大feature map 的伟大事业。必须指...
  • JNingWei
  • JNingWei
  • 2017年12月21日 19:14
  • 165
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:卷积神经网络(CNN)学习笔记2:举例理解
举报原因:
原因补充:

(最多只允许输入30个字)