关闭

打表法经典2题:小于n的质数和第k个丑数

435人阅读 评论(0) 收藏 举报
分类:

1 求小于n的所有质数

1 开一个大小为n的bool数组A,下标代表整数,值true代表被mark过,有因子,非素数

2) i 从 2开始到n - 1,如果A[i]没被mark,A[i]就是质数,然后mark有A[i]因子的数(2* A[i], 3*A[i], 4*A[i] 且< n) 这里注意,系数实际不需要从2开始,而是从A[i]开始,即从A[i] *A[i] 看起,因为更小的数之前check 过了。

public int countPrimes(int n) {
    boolean[] marked = new boolean[n];
	int count = 0;
	for (int i = 2; i < n; ++i) {
		if (!marked[i]) {
			++count;
			for (long j = (long)i * i; j < n; j += i) marked[(int)j] = true;
		}
	}
	return count;
}

2 求前k个丑数(因子里只有2,3,5的数,习惯上1作为第一个丑数,所以1, 2,3,4,5都是丑数)

开一个因子数组A{2,3, 5}和一个前k个丑数的动态数组V,初始化为{1,2,3,4,5}

不断加进新的丑数,直到V的size 达到k,,v.back() 就是答案。

得到下一个丑数的做法就是枚举3个因子{2,3,5}和已找到的丑数的乘积,对于一个因子A[i],A[i]*V[j] 第一次大于 v.back()就break,  这个数是下一个丑数的一个可能的candidate,换下一个因子,同样的逻辑。下一个丑数是每个因子的candidate中最小的那一个。

这里需要优化一下的是,对于每个因子纪录一个刚超过b.back()对应的丑数数组中相乘的那个数的下标,每次找candidate的时候不是位置0开始,而是从这个位置开始

long long kthPrimeNumber(int k) {
    long long w[] = {2, 3, 5}, t[] = {0, 0, 0};
    vector<long long> v = {1, 2, 3, 4, 5}
    if (k <= v.size()) return v[k - 1];
    
    while (v.size() < k) {
        long long x = LONG_MAX;
        for (int i = 0; i < 3; i++) {
            for (int j = t[i]; j < v.size(); j++) {
                if (w[i] * v[j] > v.back()) {
                    x = min(x, w[i] * v[j]);
                    t[i] = j;
                    break;
                }
            }
        }
        v.push_back(x);
    }
    return v.back();
}


丑数问题也可以用堆,类似杨氏矩阵求第k小,即,每得到下一个丑数,把这个数和 {2, 3, 5 } 相乘的结果加进堆,只不过这个堆要支持去重,所以实际用set 做

这一类问题的特点:从小到大输出序列,每输出一个值,把和这个值相邻的序列值放入堆。


0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:83195次
    • 积分:2959
    • 等级:
    • 排名:第11837名
    • 原创:225篇
    • 转载:5篇
    • 译文:0篇
    • 评论:0条