MIL boosting Online Tracking

原创 2013年12月04日 12:35:11

Robust Object Tracking with Online Multimple Instance Learning

作者Boris Babenko,该算法算是tracking中比较牛的算法之一

http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml该主页对算法有比较详细的介绍


看看论文题目就大概知道这是一个什么样的算法组合,MIL + boosting 

该算法能更加鲁棒性的更新模型表面特征,能够处理没有快速变化的遮挡


/******************************************************************************************************************************************/ 

                                                               MILtrack框架:

/******************************************************************************************************************************************/

input:第k个视频帧

1、根据前一帧的对象位置,在一个给点的范围r,从当前帧提取一组图片,计算该组图片的特征

2、使用我们训练好的boosting强分类器估计1中所有提取出的图片x,p(y=1|x)的值。(即该图片为正样本的概率)

                                   

3、从2中求得的所有p(y=1|x)中选取最大值,将该图片设为我们追踪位置tracker location,

 

4、从当前帧的tracker location 半径为r的范围类提取一组图片集作为我们的正样本集(MIL)

                             

     从当前帧的tracker location 半径为r到b的范围类随机提取一组图片集作为我们的负样本集

                           

5、用4中提取的正、负样本集更新强分类器


/*******************************************************************************************************************************************/  

                                                              Online MIL Boost (OMB) 强分类器更新部分

/*******************************************************************************************************************************************/

1、强分类器由k个弱分类器组成,算法总是维护一个候选弱分类器池,池中有M个弱分类器,M>k。

一个弱分类器是由一个哈尔特征和四个参数(u1,g1,u0,g0)组成,(注意:这里假设了harr feature服从正态分布)


其中y=0的情况类似,假设,然后可以利用贝叶斯公式可以计算上面弱分类器的值,每次进行到下一帧时,得到新的样例数据后进行弱分类器的参数更新,依照下列公式:


其中y为更新因子,取值范围为(0,1)



2、在线更新算法部分


 2.1、样例的可能性大小计算公式:


其中为sigmod 函数,H(x)为当前强分类器

2.2、样例块的可能性大小计算公式:


其中p(yi|xij)是表示单个样例的可能性大小,yi的取值和样例块值一致

2.3、弱分类器的选择更新极大化下列公式:


其中Hk-1是前k-1个弱分类器组成的强分类器,MIL算法中加入了loss function部分


算法更新部分流程图:



MILTrack学习

《Robust Object Tracking with Online Multipe Instance Learning 》是Babenko发表在IEEE上的一篇关于目标追踪的经典论文。作者在他...
  • tozhangning
  • tozhangning
  • 2014年06月05日 10:42
  • 1113

运动目标跟踪(十四)--MIL跟踪

原文: http://blog.csdn.net/ikerpeng/article/details/19235391 文章:Robust object tracking with on-line  m...
  • App_12062011
  • App_12062011
  • 2016年08月18日 12:23
  • 2455

eigen跟踪MILTracker

eigen跟踪MILTracker
  • jacke121
  • jacke121
  • 2017年03月03日 11:41
  • 261

CV代码合集(Computer Vision Resources)

from:cvchina:http://www.cvchina.info/2011/09/05/uiuc-cod/ Jia-Bin Huang童鞋收集,此童鞋毕业于国立交通大学,之前...
  • yuyin86
  • yuyin86
  • 2012年09月25日 09:01
  • 913

MILTrack学习1——摘要

这一篇
  • TJXUNwu
  • TJXUNwu
  • 2014年05月23日 16:52
  • 1060

MILTrack学习3--自适应外观模型

(3)在线多示例学习的鲁棒性目标追踪(MILTrack)—自适应外观模型
  • TJXUNwu
  • TJXUNwu
  • 2014年05月31日 10:16
  • 990

MILTrack学习2-介绍部分

(2)在线多示例学习的鲁棒性目标追踪(MILTrack)—摘要
  • TJXUNwu
  • TJXUNwu
  • 2014年05月23日 19:13
  • 582

VC学习摘要4

1、CPoint对象只能在相应 WM_PAINT消息的时候使用,一般被用在OnPaint消息处理函数中。其在构造的时候就执行了BeginPaint得到一个dc,在析构的时候执行 了EndPaint函数...
  • digu
  • digu
  • 2007年06月14日 01:18
  • 653

在线多实例学习online MIL

目标跟踪是计算机视觉领域里一个很重要的课题,而在线多实例学习方法是应用在视觉跟踪上的。关于这方面的讲解,网上能搜到的很少,于是自己看了若干文献,简单总结下,个人理解的不是很透彻,有不对的地方还望指正。...
  • u013089961
  • u013089961
  • 2015年04月14日 14:24
  • 1255

目标跟踪学习系列一:on-line boosting and vision 阅读

boosting的基本思想:  三个臭皮匠抵一个诸葛亮   利用一些容易得到的弱分类器 组合训练形成强分类器。 本文中基本思想就是这样的 关键用到了 :boosting用于特征选取...
  • u012192662
  • u012192662
  • 2014年02月08日 17:38
  • 5002
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:MIL boosting Online Tracking
举报原因:
原因补充:

(最多只允许输入30个字)