【DP】 (ASC 44) Braess's Paradox

原创 2015年07月10日 20:44:13

DP。。先预处理i到j的距离,可以用前缀和列出两个方程。。。然后n^2DP可以解出最大最小值。。

#include <iostream>
#include <queue> 
#include <stack> 
#include <map> 
#include <set> 
#include <bitset> 
#include <cstdio> 
#include <algorithm> 
#include <cstring> 
#include <climits>
#include <cstdlib>
#include <cmath>
#include <time.h>
#define maxn 5005
#define maxm 400005
#define eps 1e-10
#define mod 1000000007
#define INF 0x3f3f3f3f
#define PI (acos(-1.0))
#define lowbit(x) (x&(-x))
#define mp make_pair
#define ls o<<1
#define rs o<<1 | 1
#define lson o<<1, L, mid 
#define rson o<<1 | 1, mid+1, R
#define pii pair<int, int>
#pragma comment(linker, "/STACK:16777216")
typedef long long LL;
typedef unsigned long long ULL;
//typedef int LL;
using namespace std;
LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;}
LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;}
// head

double dp[2][maxn];
double a[maxn], b[maxn], c[maxn], d[maxn];
int n;

double calc(int t1, int t2)
{
	t1--;
	double aa = a[t2] - a[t1];
	double bb = b[t2] - b[t1];
	double cc = c[t2] - c[t1];
	double dd = d[t2] - d[t1];
	if(fabs(aa + cc) < eps) {
		return min(bb, dd);
	}
	double x = (cc + dd - bb) / (aa + cc);
	if(x > 1) return aa + bb;
	else if(x < 0) return cc + dd;
	else return aa * x + bb;
}

void work()
{
	for(int i = 1; i <= n; i++) {
		scanf("%lf%lf%lf%lf", &a[i], &b[i], &c[i], &d[i]);
		a[i] += a[i-1];
		b[i] += b[i-1];
		c[i] += c[i-1];
		d[i] += d[i-1];
	}
	printf("%.11f\n", calc(1, n));
	double ans = 0;
	for(int i = 1; i <= n; i++) {
		ans += calc(i, i);
	}
	printf("%.11f\n", ans);
	for(int i = 1; i <= n; i++) dp[0][i] = 1e16, dp[1][i] = 0;
	dp[0][0] = dp[1][0] = 0;
	for(int i = 1; i <= n; i++) {
		for(int j = 1; j <= i; j++) {
			dp[0][i] = min(dp[0][i], dp[0][j-1] + calc(j, i));
			dp[1][i] = max(dp[1][i], dp[1][j-1] + calc(j, i));
		}
	}
	printf("%.11f\n", dp[0][n]);
	printf("%.11f\n", dp[1][n]);

}

int main()
{
	freopen("braess.in", "r", stdin);
	freopen("braess.out", "w", stdout);
	while(scanf("%d", &n)!=EOF) {
		work();
	}
	
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

【ASC44D】【观察找规律 语言模式识别】Detect Shuffling Method map 头文件识别+特殊关键词法 or 频率哈希法

头文件识别+特殊关键词法: #include #include #include #include #include #include #include #include #include #in...

【ASC44】F - Funny Card Game

题意:给你一列牌,让你找到k个连续的子串,其中每一个子串出现次数最多的数字的出现次数为得分,问最多可以有多少分。 分析:首先可以先贪心地想一下,如果选择出来了这k个子串,那么我们总可以通过适当地对子串...

Non Absorbing DFA DP (ASC2A SGU201 ZOJ2337 ACdream1218 Gym100197A)

Non Absorbing DFA Andrew Stankevich Contest 2 A SGU 201 ZOJ 2337 ACdream 1218 Gym 100197A

ASC(1)C(树形DP)

New Year Bonus Grant Special JudgeTime Limit: 6000/3000MS (Java/Others)Memory Limit: 128000/640...
  • cq_phqg
  • cq_phqg
  • 2014年10月02日 01:07
  • 655

ACdream 1216 (ASC训练1) Beautiful People(DP)

题目地址:http://acdream.info/problem?pid=1216 这题一开始用的是线段树,后来发现查询的时候还需要DP处理,挺麻烦。。也就不了了之了。。后来想到,这题其实就是一个二...

ASC(1)E(矩阵快速幂+简单DP)

Nice Patterns Strike Back Time Limit: 20000/10000MS (Java/Others)Memory Limit: 128000/64000KB (Ja...
  • cq_phqg
  • cq_phqg
  • 2014年10月10日 00:59
  • 686

ASC(2)A(大数+图论DP)

Non Absorbing DFA Time Limit: 10000/5000MS (Java/Others)Memory Limit: 128000/64000KB (Java/Others...
  • cq_phqg
  • cq_phqg
  • 2014年10月04日 00:39
  • 823

nyoj44 nyoj17 HDU1087 DP动规 连续字符串的和最大值 单调递增最长子序列 单调递增子序列最小个数 非连续最大递增子序列

连续字符串的和最大值 给定一整型数列{a1,a2…,an},找出连续非空子串{ax,ax+1,…,ay},使得该子序列的和最大,其中,1 样例输入 1 5 1 2 -1 3 -2 样例输出 ...

NYOJ 44 子串和 (经典的dp问题)

在《计算机算法设计与分析》看到过其它的解法,不过还是用dp效率最高 时间限制:5000 ms  |  内存限制:65535 KB 难度:3 描述 给定一...

NYOJ44 子串和(DP)

题目: 子串和 时间限制:5000 ms  |  内存限制:65535 KB 难度:3 描述给定一整型数列{a1,a2...,an},找出连续非空子串{ax,ax+1,...,ay},...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【DP】 (ASC 44) Braess's Paradox
举报原因:
原因补充:

(最多只允许输入30个字)