关闭

SDUTOJ 1130 拔河

标签: DP01背包
547人阅读 评论(0) 收藏 举报
分类:

SDUTOJ 1130 拔河                         题目链接:http://sdjzu.acmclub.com/index.php?app=problem_title&id=147&problem_id=1130

题目分析:将一个数组内元素拆成两个数组,使其差值尽量小,可以转化为01背包问题。总数已知,那么求出较小的,较大的也就自己出来了。较小的(或相等)的那个上界是总重量的一半,这就是01背包的容量。然后就是常规01背包问题了。

状态转移:

    方程伪代码(优化前):

dp[i][v]=max(dp[i-1][v],dp[i-1][v-c[i]]+w[i])
显然这是个二维的,但其空间复杂度可优化,优化后如下:

for i=1..N
     for v=V..0 
        dp[v]=max{dp[v],dp[v-c[i]]+w[i]};
    思想:i意为当前走到第i件物品(装不装进去要看转移方程),v意为当前背包容量(如需优化,则要从大到小)。走到第i件物品时,要看当前物品能否装入背包,若能,再看装入背包后价值是否增加,若增加,就装入此物品。

code:

#include<stdio.h>
#include<string.h>
int max(int a,int b)
{
    return a>b?a:b;
}
int main()
{
    int n,i,j,sum,a[110],dp[500000];
    while(scanf("%d",&n)!=EOF)
    {
        sum=0;
        memset(dp,0,sizeof(dp));
        for(i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
            sum+=a[i];
        }
        for(i=1; i<=n; i++)
        {
            for(j=sum/2; j>=0; j--)
            {
                if(j>=a[i])
                {
                    dp[j]=max(dp[j],dp[j-a[i]]+a[i]);
                }
            }
        }
        printf("%d %d\n",dp[sum/2],sum-dp[sum/2]);
    }
    return 0;
}
PS:此处已优化为一维(不优化不行,100*50000是5百万,存不下)

//未赋初值、输出答案错误等wrong2,数组开小RE2

PSS:九讲走起~







0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:205510次
    • 积分:5156
    • 等级:
    • 排名:第5326名
    • 原创:305篇
    • 转载:21篇
    • 译文:0篇
    • 评论:33条
    文章分类
    最新评论