【平安夜的胡策】T2(矩阵快速幂)

15 篇文章 0 订阅

T2

这里写图片描述
这里写图片描述

题解:

方法一:现(da)实(biao)法

我们先写一个dfs找找规律?
1 3 3
2 3 9
3 3 21
4 3 51
5 3 123
6 3 297
7 3 717

看上去毫无规律啊
但是我们有充足的想象!
21-9-9=3
51-21-21=9
123-51-51=21
297-123-123=51
717-297-297=123

m=3:f[i]=2*f[i-1]+f[i-2]

嗯我们看看4
2 4 16
3 4 64
4 4 232
5 4 856
6 4 3160
7 4 11656
m=4:f[i]=3*f[i-1]+2*f[i-2]+2*f[i-3]
1 5 5
2 5 25
3 5 125
4 5 625
5 5 3005
6 5 14545
7 5 70445
8 5 341185
m=5:f[i]=4*f[i-1]+3*f[i-2]+4*f[i-3]+6*f[i-4]
哇看起来完全没有什么关系,但是rty dalao强行找到了规律

f[i]=k=1m1f[ik](k1)!(mk)

这样只需要加个矩乘优化就好了

方法二:科学dp法

f[i][j]:表示到第i位为止,[i-j+1,i]这j位每一位上的颜色都不同(一共有j种颜色),这种情况下的方案数
我们需要从f[i-1]转移到f[i]
此处引用C_T的图辣
这里写图片描述
不能有连续m种不同颜色,所以第二维只能到m-1
我们处理出f[1]~f[m-1],之后的n-m+1项,我们用矩阵加速
这里写图片描述
C_T的图也很好呀,在矩乘的时候最靠左的一行是横着的就是了
于是我们得到了二维递推数组矩乘的方法:按照第一维为一行,第二维递增,最后全部累加

代码:

法一:

#include <cstdio>
#include <cstring>
#define LL long long
using namespace std;
const int mod=1e9+7;
LL n,f[205],fac[205];int m;
struct mat{int sq[200][200];}mul;
mat calc(mat a,mat b)
{
    mat c;memset(c.sq,0,sizeof(c.sq));
    for (int i=1;i<=m-1;i++)
      for (int j=1;j<=m-1;j++)
        for (int k=1;k<=m-1;k++)
          c.sq[i][j]=(c.sq[i][j]+((LL)a.sq[i][k]*b.sq[k][j])%mod)%mod; 
    return c;
}
mat ksm(mat a,LL k)
{   
    mat ans=a; k--;
    for (;k;k>>=1,a=calc(a,a))
      if (k&1) ans=calc(ans,a);
    return ans; 
}
int main()
{
    freopen("herzlich.in","r",stdin);
    freopen("herzlich.out","w",stdout);
    scanf("%lld%d",&n,&m);
    f[0]=1; fac[0]=1;
    for (int i=1;i<=m;i++)
    {
        f[i]=f[i-1]*(LL)m%mod;
        fac[i]=fac[i-1]*(LL)i%mod;
    }
    if (n<m) {printf("%lld",f[n]);return 0;}
    for (int i=1;i<=m-2;i++) mul.sq[i][i+1]=1;
    for (int i=1;i<=m-1;i++) mul.sq[m-1][i]=((LL)i*fac[m-i-1])%mod; 
    mul=ksm(mul,n-m+1);
    LL ans=0; 
    for (int i=1;i<=m-1;i++) ans=(ans+f[i]*(LL)mul.sq[m-1][i]%mod)%mod;
    printf("%lld",ans);
}

法二:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
const ll Mod=1e9+7;
ll n,F[1001][201],answer[1001];int m;
struct mat{ll t[120][120];}H;
mat mul(mat a,mat b){
    mat C;
    for(int i=1;i<m;i++)
        for(int j=1;j<m;j++){
            C.t[i][j]=0;
            for(int k=1;k<m;k++)
            C.t[i][j]=(C.t[i][j]+a.t[i][k]*b.t[k][j])%Mod;
        } 
    return C;
}
mat ksm(mat A,ll b){
    mat ans=A;b--;
    for(;b;b>>=1,A=mul(A,A)) 
    if(b&1) ans=mul(ans,A);
    return ans;
}
int main()
{
    freopen("herzlich.in","r",stdin);
    freopen("herzlich.out","w",stdout);
    scanf("%lld%d",&n,&m);
    for(int i=1;i<m;i++)
        for(int j=1;j<=i;j++)
            H.t[i][j]=1;
    for(int i=1;i<m-1;i++) H.t[i][i+1]=m-i;
    F[1][1]=m;
    for(int i=2;i<m;i++){
        for(int j=2;j<m;j++){
            F[i][j]=F[i-1][j-1]*(m-j+1)%Mod;
            for(int k=j;k<m;k++)
            F[i][j]=(F[i][j]+F[i-1][k])%Mod;
        } 
        for(int k=1;k<m;k++) F[i][1]=(F[i][1]+F[i-1][k])%Mod; 
    } 
    if(n<=m-1){
        ll sum=0;
        for(int i=1;i<m;i++) sum=(sum+F[n][i])%Mod;
        printf("%lld\n",sum);return 0;
    }
    H=ksm(H,n-m+1); 
    ll sum=0; 
    for(int i=1;i<m;i++)
        for(int k=1;k<m;k++)
            sum=(sum+F[m-1][k]*H.t[k][i])%Mod;
    printf("%lld\n",sum);
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值