关闭

Wavlet Denoise

1076人阅读 评论(0) 收藏 举报

传统的去噪方法主要包括线性滤波方法和非线性滤波方法,如中值滤波和Wiener滤波等。传统的去噪方法的不足在于使信号变换后的熵增高、无法刻画信号的非平稳特性并且无法得到信号的相关性。

小波变换具有下列良好特性:

(1)低熵性:小波系数的稀疏分布,使信号变换后的熵降低;

(2)多分辨率特性:可以非常好地刻画信号的非平稳特性,如边缘、尖峰、断点等;

(3)去相关性:可取出信号的相关性,且噪声在小波变换后有白化趋势,所以比时域更有利于去噪。

(4)选基灵活性:由于小波变换可以灵活选择基函数,因此可根据信号特点和去噪要求选择适合小波。

阈值去噪方法的思想就是对小波分解后的各层系数中模大于和小于某阈值的系数分别处理,然后对处理完的小波系数再进行反变换,重构出经过去噪后的信号。

一般来说,信号去噪的基本步骤主要包括以下三步:

(1)信号的小波分解;

(2)小波分解高频系数的阈值量化;

(3)信号的小波重构。使用小波分解的低频系数以及阈值量化后的高频系数进行小波重构。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:4647次
    • 积分:61
    • 等级:
    • 排名:千里之外
    • 原创:1篇
    • 转载:4篇
    • 译文:0篇
    • 评论:0条
    友情Blog