Wavlet Denoise

原创 2006年05月25日 10:49:00

传统的去噪方法主要包括线性滤波方法和非线性滤波方法,如中值滤波和Wiener滤波等。传统的去噪方法的不足在于使信号变换后的熵增高、无法刻画信号的非平稳特性并且无法得到信号的相关性。

小波变换具有下列良好特性:

(1)低熵性:小波系数的稀疏分布,使信号变换后的熵降低;

(2)多分辨率特性:可以非常好地刻画信号的非平稳特性,如边缘、尖峰、断点等;

(3)去相关性:可取出信号的相关性,且噪声在小波变换后有白化趋势,所以比时域更有利于去噪。

(4)选基灵活性:由于小波变换可以灵活选择基函数,因此可根据信号特点和去噪要求选择适合小波。

阈值去噪方法的思想就是对小波分解后的各层系数中模大于和小于某阈值的系数分别处理,然后对处理完的小波系数再进行反变换,重构出经过去噪后的信号。

一般来说,信号去噪的基本步骤主要包括以下三步:

(1)信号的小波分解;

(2)小波分解高频系数的阈值量化;

(3)信号的小波重构。使用小波分解的低频系数以及阈值量化后的高频系数进行小波重构。

MATLAB wavlet工具箱使用手册2.0版

  • 2011年11月12日 10:21
  • 15.11MB
  • 下载

关于五三整数小波变换wavlet

  • 2010年12月07日 11:07
  • 263KB
  • 下载

01. Denoise(Noise Reduction)

01. Denoise(Noise Reduction) 1. Bilateral Filter 1. Wikipedia: http://en.wikipedia.org/wiki/Bilat...

Denoise-and-Forward Network Coding

  • 2015年03月31日 14:35
  • 1.46MB
  • 下载

shape-adaptive DCT denoise

  • 2009年12月25日 11:24
  • 4.09MB
  • 下载

Deep Learning模型之:Denoise Autoencoder

当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据的输入层)引入随机噪声,这种方法称为Denoise Autoencoder(简称dAE),由Beng...

深度学习(三)denoise autoencoder的Python实现

本章主要讲述autoencoder另外一种改进,denoise autoencoder

Denoise Autoencoder

http://www.bubuko.com/infodetail-497920.html搬运这篇文章 当采用无监督的方法分层预训练深度网络的权值时,为了学习到较鲁棒的特征,可以在网络的可视层(即数据...

Ps图片降噪插件Topaz DeNoise v5.0

  • 2014年10月13日 15:34
  • 21.23MB
  • 下载

DeNoise.v5.0.0

  • 2015年05月13日 12:14
  • 14.34MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Wavlet Denoise
举报原因:
原因补充:

(最多只允许输入30个字)