四边形不等式是一种比较常见的优化动态规划的方法:
证明:http://baike.baidu.com/view/1985058.htm?fr=aladdin
解决这类问题的大概步骤是:
状态转移方程 dp[i][j]=min{dp[i][k-1]+dp[k][j]}+w[i][j] (i<=k<=j)
要用平行四边形优化则要证明w[i][j],dp[i][j]是否满足四边形不等式
平行四边形优化是动态规划的一种常见优化手段,尤其适用于满足四边形不等式的问题。通过证明w[i][j]和dp[i][j]满足四边形不等式,可以将复杂度从O(n^3)降低到O(n^2)。文章介绍了四边形不等式的概念、证明以及在石子合并问题(如HDOJ2829)中的应用。
四边形不等式是一种比较常见的优化动态规划的方法:
证明:http://baike.baidu.com/view/1985058.htm?fr=aladdin
解决这类问题的大概步骤是:
状态转移方程 dp[i][j]=min{dp[i][k-1]+dp[k][j]}+w[i][j] (i<=k<=j)
要用平行四边形优化则要证明w[i][j],dp[i][j]是否满足四边形不等式
683

被折叠的 条评论
为什么被折叠?