平行四边形优化(HDOJ3506)

平行四边形优化是动态规划的一种常见优化手段,尤其适用于满足四边形不等式的问题。通过证明w[i][j]和dp[i][j]满足四边形不等式,可以将复杂度从O(n^3)降低到O(n^2)。文章介绍了四边形不等式的概念、证明以及在石子合并问题(如HDOJ2829)中的应用。

四边形不等式是一种比较常见的优化动态规划的方法:

证明:http://baike.baidu.com/view/1985058.htm?fr=aladdin

解决这类问题的大概步骤是:

状态转移方程 dp[i][j]=min{dp[i][k-1]+dp[k][j]}+w[i][j]  (i<=k<=j) 

要用平行四边形优化则要证明w[i][j],dp[i][j]是否满足四边形不等式


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值