Hanoi

原创 2015年11月21日 20:21:39

 虽然之前就写过,但是都没有现在觉得的明白,拖延癌也是醉了。

 Hanoi问题。

设a, b, c是三个塔座,开始时,a上有n个圆盘,自上而下,由大到小,圆盘编号从1-n,现在要将这些圆盘从a移动到b顺序不变。

移动规则:1.每次只能移动一个。2.任何情况大的不能在小的下面。3.满足1,2情况下,可以在abc上任意移动。

(书上有一个简单的解法,但是并没有算法的实现,去查这个的时候看见这个论坛帖子还不错,贴过来~点我点我点我!!!

下面描述这个简单的算法:假设塔座a,b,c排成一个三角形,a->b->c->a构成一个顺时针循环。在移动圆盘的时候,若是奇数次移动,就把最小的圆盘顺时针移动到下一个塔座;若是偶数次移动,就保持最小的圆盘不动,在其他两个塔中把较小的移到另一个上面。

我还用纸和笔推了一下,亲测成功。)

 说递归算法之前还要说一句分治,什么是分治法?分治法的基本思想就是把一个规模为n的问题分解为k个规模较小的子  问题,这些子问题互相独立且与原问题相同。递归的解子问题,然后将各个子问题的解进行合并就可以得到原问题的  解。

 Hanoi问题的解法就是典型的分治咯。

n个盘子从a->c,中间盘子是b;也就相当于把n-1个盘子从a->b,然后把第n个从a->c,再把剩下的n-1个盘子从b->c就可以实现了。

即hanoi(n, a, c, b) = hanoi(n-1, a, b, c)+move(n, a->c)+hanoi(n-1, b, c, a)

同理n-1个盘子要从a->b,就要把n-2个盘子从a->c,再把第n-1个盘子从a->b,最后再把剩下的n-2个盘子从c->b

 hanoi(n-1, a, b, c) = hanoi(n-2, a, c, b)+move(n-1, a->b)+hanoi(n-2, c, b, a)

。。。。。。就酱紫下去。

n个盘子从a->c的问题变成了n-1个盘子从a->b   

n-1个盘子从a->b的问题就变成了n-2个盘子从a->c

n-2个盘子从a->c的问题就又可以变成n-3个盘子从a->b

最后1个盘子直接移动即可

大问题变成小问题,然后解决。

不知道你懂没懂,反正我懂了。。大笑

落下一句话,移动次数是num = 2^n-1

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int cnt;
void hanoi(int n, char a, char b, char c){
    if(n == 1){
        printf("%c->%c\n", a, b);
    }
    else{
        hanoi(n-1, a, c, b);
        printf("%c->%c\n", a, b);
        hanoi(n-1, c, b, a);
    }
}

int main()
{
    int n;
    scanf("%d", &n);
    hanoi(n, 'a', 'b', 'c');
    return 0;
}
运行结果:



版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

hanoi算法数据结构

  • 2013-04-23 12:37
  • 432B
  • 下载

Hanoi塔演示

  • 2014-05-20 11:39
  • 15KB
  • 下载

Vijos P1354 Hanoi双塔问题(动态规划,高精度)

貌似算不上动规,主要是高精

汉诺塔 Hanoi

  • 2014-02-08 23:12
  • 23KB
  • 下载

基础的C++程序hanoi

Tower of Hanoi

汉诺塔其实也就这么回事         初涉汉诺塔相关题目是在大一上学期C语言课递归章节,当时递归一知半解,汉诺塔一窍不通。经过了一年多的风霜洗礼,最近又见到汉诺塔的题,理解起来就容易多了。     ...

VB Hanoi问题

  • 2010-06-07 14:44
  • 40KB
  • 下载

hanoi塔问题解析(二)

在上一篇文章中解释了一下hanoi塔的基本过程和以及路径的打印! 在这片文章中我们主要的说一下当前运行到得状态时第几个最佳状态! 在解决上面的问题之间我们还要解决的就是hanoi塔移动的最小步数h...

hanoi游戏源码MFC编写简单

  • 2010-01-08 23:40
  • 3.43MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)