关闭

Hanoi

标签: 算法hanoi
310人阅读 评论(0) 收藏 举报
分类:

 虽然之前就写过,但是都没有现在觉得的明白,拖延癌也是醉了。

 Hanoi问题。

设a, b, c是三个塔座,开始时,a上有n个圆盘,自上而下,由大到小,圆盘编号从1-n,现在要将这些圆盘从a移动到b顺序不变。

移动规则:1.每次只能移动一个。2.任何情况大的不能在小的下面。3.满足1,2情况下,可以在abc上任意移动。

(书上有一个简单的解法,但是并没有算法的实现,去查这个的时候看见这个论坛帖子还不错,贴过来~点我点我点我!!!

下面描述这个简单的算法:假设塔座a,b,c排成一个三角形,a->b->c->a构成一个顺时针循环。在移动圆盘的时候,若是奇数次移动,就把最小的圆盘顺时针移动到下一个塔座;若是偶数次移动,就保持最小的圆盘不动,在其他两个塔中把较小的移到另一个上面。

我还用纸和笔推了一下,亲测成功。)

 说递归算法之前还要说一句分治,什么是分治法?分治法的基本思想就是把一个规模为n的问题分解为k个规模较小的子  问题,这些子问题互相独立且与原问题相同。递归的解子问题,然后将各个子问题的解进行合并就可以得到原问题的  解。

 Hanoi问题的解法就是典型的分治咯。

n个盘子从a->c,中间盘子是b;也就相当于把n-1个盘子从a->b,然后把第n个从a->c,再把剩下的n-1个盘子从b->c就可以实现了。

即hanoi(n, a, c, b) = hanoi(n-1, a, b, c)+move(n, a->c)+hanoi(n-1, b, c, a)

同理n-1个盘子要从a->b,就要把n-2个盘子从a->c,再把第n-1个盘子从a->b,最后再把剩下的n-2个盘子从c->b

 hanoi(n-1, a, b, c) = hanoi(n-2, a, c, b)+move(n-1, a->b)+hanoi(n-2, c, b, a)

。。。。。。就酱紫下去。

n个盘子从a->c的问题变成了n-1个盘子从a->b   

n-1个盘子从a->b的问题就变成了n-2个盘子从a->c

n-2个盘子从a->c的问题就又可以变成n-3个盘子从a->b

最后1个盘子直接移动即可

大问题变成小问题,然后解决。

不知道你懂没懂,反正我懂了。。大笑

落下一句话,移动次数是num = 2^n-1

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int cnt;
void hanoi(int n, char a, char b, char c){
    if(n == 1){
        printf("%c->%c\n", a, b);
    }
    else{
        hanoi(n-1, a, c, b);
        printf("%c->%c\n", a, b);
        hanoi(n-1, c, b, a);
    }
}

int main()
{
    int n;
    scanf("%d", &n);
    hanoi(n, 'a', 'b', 'c');
    return 0;
}
运行结果:



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8236次
    • 积分:376
    • 等级:
    • 排名:千里之外
    • 原创:30篇
    • 转载:2篇
    • 译文:0篇
    • 评论:1条
    文章分类
    最新评论