机器学习2-KNN(转)

转载 2015年11月18日 16:50:08

一、算法概述
1、kNN算法又称为k近邻分类(k-nearest neighbor classification)算法。
最简单平凡的分类器也许是那种死记硬背式的分类器,记住所有的训练数据,对于新的数据则直接和训练数据匹配,如果存在相同属性的训练数据,则直接用它的分类来作为新数据的分类。这种方式有一个明显的缺点,那就是很可能无法找到完全匹配的训练记录。

kNN算法则是从训练集中找到和新数据最接近的k条记录,然后根据他们的主要分类来决定新数据的类别。该算法涉及3个主要因素:训练集、距离或相似的衡量、k的大小。

2、代表论文
Discriminant Adaptive Nearest Neighbor Classification
Trevor Hastie and Rolbert Tibshirani
IEEE TRANSACTIONS ON PAITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 18, NO. 6, JUNE 1996
http://www.stanford.edu/~hastie/Papers/dann_IEEE.pdf

3、行业应用
客户流失预测、欺诈侦测等(更适合于稀有事件的分类问题)

二、算法要点

1、指导思想
kNN算法的指导思想是“近朱者赤,近墨者黑”,由你的邻居来推断出你的类别。

计算步骤如下:
1)算距离:给定测试对象,计算它与训练集中的每个对象的距离
2)找邻居:圈定距离最近的k个训练对象,作为测试对象的近邻
3)做分类:根据这k个近邻归属的主要类别,来对测试对象分类

2、距离或相似度的衡量
什么是合适的距离衡量?距离越近应该意味着这两个点属于一个分类的可能性越大。
觉的距离衡量包括欧式距离、夹角余弦等。
对于文本分类来说,使用余弦(cosine)来计算相似度就比欧式(Euclidean)距离更合适。

3、类别的判定
投票决定:少数服从多数,近邻中哪个类别的点最多就分为该类。
加权投票法:根据距离的远近,对近邻的投票进行加权,距离越近则权重越大(权重为距离平方的倒数)

三、优缺点

1、优点
简单,易于理解,易于实现,无需估计参数,无需训练
适合对稀有事件进行分类(例如当流失率很低时,比如低于0.5%,构造流失预测模型)
特别适合于多分类问题(multi-modal,对象具有多个类别标签),例如根据基因特征来判断其功能分类,kNN比SVM的表现要好

2、缺点
懒惰算法,对测试样本分类时的计算量大,内存开销大,评分慢
可解释性较差,无法给出决策树那样的规则。

四、常见问题

1、k值设定为多大?
k太小,分类结果易受噪声点影响;k太大,近邻中又可能包含太多的其它类别的点。(对距离加权,可以降低k值设定的影响)
k值通常是采用交叉检验来确定(以k=1为基准)
经验规则:k一般低于训练样本数的平方根

2、类别如何判定最合适?
投票法没有考虑近邻的距离的远近,距离更近的近邻也许更应该决定最终的分类,所以加权投票法更恰当一些。

3、如何选择合适的距离衡量?
高维度对距离衡量的影响:众所周知当变量数越多,欧式距离的区分能力就越差。
变量值域对距离的影响:值域越大的变量常常会在距离计算中占据主导作用,因此应先对变量进行标准化。

4、训练样本是否要一视同仁?
在训练集中,有些样本可能是更值得依赖的。
可以给不同的样本施加不同的权重,加强依赖样本的权重,降低不可信赖样本的影响。

5、性能问题?
kNN是一种懒惰算法,平时不好好学习,考试(对测试样本分类)时才临阵磨枪(临时去找k个近邻)。
懒惰的后果:构造模型很简单,但在对测试样本分类地的系统开销大,因为要扫描全部训练样本并计算距离。
已经有一些方法提高计算的效率,例如压缩训练样本量等。

6、能否大幅减少训练样本量,同时又保持分类精度?
浓缩技术(condensing)
编辑技术(editing)

参考:
维基百科:
http://zh.wikipedia.org/wiki/%E6%9C%80%E9%82%BB%E8%BF%91%E6%90%9C%E7%B4%A2
百度百科:http://baike.baidu.com/view/1485833.htm

KNN可以用于推荐:
这里我们不用KNN来实现分类,我们使用KNN最原始的算法思路,即为每个内容寻找K个与其最相似的内容,并推荐给用户。

相关文章推荐

4.2KNN算法实例2--python机器学习

测试数据的格式仍然和前面使用的身高体重数据一致。不过数据增加了一些: 1.5 40 thin   1.5 50 fat   1.5 60 fat   1.6...

【机器学习实战-kNN:约会网站约友分类】python3实现-书本知识【2】

说明: 本文内容为【Peter Harrington -机器学习实战】一书的学习总结笔记。 功能描述: 约会网站约友分类功能:用户输入关注的待约会对象特征信息,程序自动判别该待约会对象属于哪类约会...

机器学习之KNN2

最近在看Machine Learning INACTION ,于是打算写一系列的关于机器学习的文章,今天是第二天 因为使用python,以前一直用sublimeText2当作编辑器,感觉py...

机器学习实战2:k近邻算法KNN(python)

原理:简单来说,就是采用测量不同特征值之间的距离将其分类,将某点划分到离得最近的那k个点所体现的那一类上。具体来说,将这样实现:首先,导入numpy模块,创建数据集:from numpy import...

【机器学习实践(2)】K近邻(KNN)模型

根据machine learing in action 第二章改编 machine learing in action 是一本介绍机器学习实例的书,书中大量使用了scipy系列库,像matlab一样使...

读书笔记:机器学习实战(1)——章2的knn代码和个人改进与注释

最近在学习《机器学习实战》一书,受益匪浅,之前还看过本书《机器学习系统设计》也很不错,个人觉得前者更注重算法学习和白盒代码优化(原理理解),而后者更注重skit-learn 等工具包的黑盒使用,更重要...

机器学习笔记2-基于KNN算法的手写字识别程序

import numpy import operator import os from PIL import Image def classify(inX,dataSet,labels,k=3):...

机器学习kNN

机器学习实战kNN之手写识别

kNN算法算是机器学习入门级绝佳的素材。书上是这样诠释的:“存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都有标签,即我们知道样本集中每一条数据与所属分类的对应关系。输入没有标签的新数据...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)