【SPOJ-TRANSP2】Transposing is Even More Fun【Pólya】【欧拉函数】【二进制】

这个题真有趣...


参考了http://www.cnblogs.com/jianglangcaijin/archive/2013/12/04/3457446.html,感觉这篇文章写得挺不错。


举个具体例子来说。

当a = 2,b = 1时,如图:


我们要将它转置为:


我们按二进制写下他们的坐标变化情况


我们发现:

1还在自己的位置。

2从001跑到了010,010原来的位置上是3,即2换到3。

3从010跑到了100,100原来的位置上是5,即3换到5。

4从011跑到了110,110原来的位置上是7,即4换到7。

同理,5换到2,6换到4,7换到6,8没有动。

显然这是一个置换,我们写出来:


我们发现这个置换的循环节为:


考虑循环节的性质,循环节内的所有点要调换到合适的位置,假设这个循环节有x个点,那么只需要调换x - 1次即可。

换句话说,如果有一个循环节,那么就可以少调换1次。

那么我们就有了思路:

每个点都需要调换一次,总共为2 ^ (a + b)次,但是因为循环节的存在,设循环节的个数为K的话,那么我们就可以少调换K次,答案就是2 ^ (a + b) - K。


前一项显然很好求,我们现在需要求K。

我们发现,在同一个循环节内的点,他们的二进制坐标可以通过向左平移a位(看成项链模型,不是<<)或者向右平移b位互相得到。(可以用笔写写其他情况,因为数据太大就不写出来了)

那么就可以具体为一个实际问题:

有一个由a + b个珠子串成的项链,有2种颜色(代表0和1),规定向左旋转a位(或向右旋转b位)为相同的项链,求不同的项链数。

但是这样似乎还是不好做,我们想把问题转化为”任意旋转都视为相同项链“的情况,这样我们就可以用Pólya了。于是再抽象一下。


还是举个具体例子吧,假设此时a = 3,b = 6,有a + b = 9个珠子。


我们知道一个结论:移动a步,一共有gcd(a, a + b) = gcd(a, b)个循环节,每个循环节的长度都是(a + b) / gcd(a, b)。(这个证明详见我的另一篇文章:http://blog.csdn.net/braketbn/article/details/50669362)

我们人为给珠子标号,假设珠子是从a1, b1, c1开始旋转的,我们的思路是:

把a1, b1, c1看作一个大珠子,把a2, b2, c2看作下一个大珠子,以此例推就是把ai, bi, ci看做第i个大珠子。

这样我们得到一个新项链


一共有(a + b) / gcd(a, b)个大珠子,每个大珠子都可以由2 ^ gcd(a, b)个颜色染色。

然后我们就把原问题转化成了一个等价的、熟悉的问题了。

Q:等等?为啥等价...?

A:一个大珠子的颜色其实代表了一个01串。具体来说,假设我们第一个大珠子的颜色是(红,蓝),那么a1和b1就被染上同种颜色,c1是另一种颜色。

大珠子的旋转1格相当于把原珠子对应的颜色旋转3格,满足原问题的条件,所以是完全等价的。


问题转化完毕,现在我们求K。

然后就是喜闻乐见的公式啦!

可以类比POJ2154(http://blog.csdn.net/acdreamers/article/details/8656247,这个文章写得不错)

令n = (a + b) / gcd(a, b),x = 2 ^ gcd(a, b)。

先用Pólya列出式子


用符号,化为


对gcd变形


从枚举k变为枚举k/d


注意第二个求和符号,刚好是欧拉函数的定义,变为


这就是最终的K...


phi怎么办?及时算?会TLE。于是要先用线性筛预处理出n以内的phi。

还有x...也要预处理出n以内的2的幂。

直接枚举d也会TLE,所以每次先把n质因数分解掉,dfs每个质因数的指数是多少,就可以枚举d了。

1/n的话求个逆元即可。

最后的答案是


完啦...

细节看代码。


#include <cstdio>

using namespace std;

typedef long long LL;

const int maxn = 1000001, p = 1000003;

int a, b, n, pow[maxn], phi[maxn], prime[maxn], cnt, fact[maxn], alpha[maxn], tot;
bool isnotprime[maxn];

inline int mul(int a, int b) {
	return ((LL)a * b) % p;
}

inline int iread() {
	int f = 1, x = 0; char ch = getchar();
	for(; ch < '0' || ch > '9'; ch = getchar()) f = ch == '-' ? -1 : 1;
	for(; ch >= '0' && ch <= '9'; ch = getchar()) x = x * 10 + ch - '0';
	return f * x;
}

void getphi() {
	isnotprime[1] = 1; phi[1] = 1;
	for(int i = 2; i < maxn; i++) {
		if(!isnotprime[i]) prime[++cnt] = i, phi[i] = (i - 1) % p;
		for(int j = 1; j <= cnt && i * prime[j] < maxn; j++) {
			isnotprime[i * prime[j]] = 1;
			if(i % prime[j] == 0) {
				phi[i * prime[j]] = phi[i] * prime[j] % p;
				break;
			}
			phi[i * prime[j]] = phi[i] * phi[prime[j]] % p;
		}
	}
}

void factor(int x) {
	tot = 0;
	for(int i = 1; i <= cnt && prime[i] * prime[i] <= n; i++) if(x % prime[i] == 0) {
		++tot;
		fact[tot] = prime[i];
		for(alpha[tot] = 0; x % prime[i] == 0; x /= prime[i]) alpha[tot]++;
	}
	if(x > 1) ++tot, fact[tot] = x, alpha[tot] = 1;
}

int ans, L, g;

void dfs(int x, int d) {
	if(d > tot) {
		ans = (ans + mul(pow[x * g], phi[L / x])) % p;
		return;
	}
	for(int i = 0; i <= alpha[d]; i++) {
		dfs(x, d + 1);
		x *= fact[d];
	}
}

int gcd(int a, int b) {
	for(; b; b ^= a ^= b ^= a %= b);
	return a;
}

void exgcd(int a, int b, LL &x, LL &y) {
	b ? (exgcd(b, a % b, y, x), y -= a / b * x) : (x = 1, y = 0);
}

int main() {
	getphi();
	pow[0] = 1; for(int i = 1; i < maxn; i++) pow[i] = (pow[i - 1] << 1) % p;

	int T = iread();
	while(T--) {
		a = iread(); b = iread();
		if(!a || !b) {
			printf("0\n");
			continue;
		}

		n = a + b;
		g = gcd(a, b);
		L = n / g; factor(L);
		ans = 0;
		dfs(1, 1);
		LL x, y;
		exgcd(L, p, x, y); x = (x % p + p) % p;
		ans = mul(ans, x);
		ans = pow[n] - ans; ans = (ans % p + p) % p;
		printf("%d\n", ans);
	}

	return 0;
}



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 22
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值