关闭
当前搜索:

有趣的开源软件:语音识别工具Kaldi (二)

在上一篇blog中简单的介绍了Kaldi的安装方法 有趣的开源软件:语音识别工具Kaldi (一) 在这篇blog中继续Kaldi模型训练的步骤,介绍一下在模型训练之前的一些数据准备的工作。因为我也是正在学习语音识别和Kaldi,有些地方不一定说的很正确,如果发现错误,还请指正。 在Kaldi源代码树中,有一个叫做egs的文件夹,在这个文件夹中保存着一些Kaldi在公共数据集上的训练步骤(s...
阅读(128) 评论(0)

Kaldi HCLG 深入理解

1. 相关部分包含的主要任务 1.1 WFST Key Concepts determinizationminimizationcompositionequivalentepsilon-freefunctionalon-demand algorithmweight-pushingepsilon removal 1.2 HMM Key Concepts Marko...
阅读(33) 评论(0)

走进语音识别中的WFST(一)

本人最近在研究语音识别的生成Graph和Lattice的模块,其中用到了WFST这个概念,惊叹于它的神奇也被它的复杂搞得晕头转向。于是决定静下心来仔细研读了Mohri大牛的Speech Recognition with Weighted Finite-state Transducer这篇论文和一些相关资料,算是入门了其中的算法,有些体悟在这里和大家一起探讨,也算是对自己近期学习的一个总结。本系列会...
阅读(57) 评论(0)

语音识别中的lattice与confusion network

如果大家使用搜狗输入法的语音识别可能会发现在我们说我一句话之后,语音识别会返给你多个结果,这些结果之间只有微小差异(很多时候是发音相同的替代词)。绝大多数时候,输入法给出的结果就是我们需要的,但是偶尔也会出现候选结果中的才是我们需要的。你可能会好奇这些候选结果是如何产生的,在本文中我就给大家简单介绍一下。 one best 最初的语音识别结果只有一个,也被称为one best,即一个最...
阅读(78) 评论(0)

决策树学习笔记整理

本文目的 最近一段时间在Coursera上学习Data Analysis,里面有个assignment涉及到了决策树,所以参考了一些决策树方面的资料,现在将学习过程的笔记整理记录于此,作为备忘。   算法原理 决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性...
阅读(31) 评论(0)

Kaldi决策树状态绑定学习笔记

原理 学习资料:  1. SLP Ch10.3  2. Daney Povey Kaldi Lecture3  3. 官方决策树三个文档、HMM文档  4. 爱丁堡大学CDHMM-PPT  5. 论文《Tree-Based State Tying For High Accuracy Acoustic Modelling》S.J.Young  6. 论文《Decision Tr...
阅读(39) 评论(0)

HTK语音识别中的决策树

1.为什么需要决策树 我们在使用HTK进行语音识别模型训练的过程中,首先进行的是单音素、单个高斯的模型训练。抛开单个高斯不说,单音素模型本身有很大缺点:没有考虑到本音素前后音素的发音对本音素的影响。比如,同样是一个音素iy,如果它前面的音素分别是h和p,那么iy这个音素在这两种情况下的发音会有所不同,那么模型参数也就会受到其影响,此时,如果用同一个模型来描述音素iy,那么就会不合理。 ...
阅读(40) 评论(0)

HTTP长连接、短连接使用及测试

概念 HTTP短连接(非持久连接)是指,客户端和服务端进行一次HTTP请求/响应之后,就关闭连接。所以,下一次的HTTP请求/响应操作就需要重新建立连接。 HTTP长连接(持久连接)是指,客户端和服务端建立一次连接之后,可以在这条连接上进行多次请求/响应操作。持久连接可以设置过期时间,也可以不设置。 我为什么没有说HTTP/1.0 默认短连接,HTTP/1.1起,默认长连接呢?因为我...
阅读(130) 评论(0)

HMM学习最佳范例一:介绍

隐马尔科夫模型(HMM)依然是读者访问“我爱自然语言处理”的一个热门相关关键词,我曾在《HMM学习最佳范例与崔晓源的博客》中介绍过国外的一个不错的HMM学习教程,并且国内崔晓源师兄有一个相应的翻译版本,不过这个版本比较简化和粗略,有些地方只是概况性的翻译了一下,省去了一些内容,所以从今天开始计划在52nlp上系统的重新翻译这个学习教程,希望对大家有点用。 一、介绍(Introduction)...
阅读(66) 评论(0)

征集峰值QPS/QPS/PV/UV/服务器数量/并发数/吐吞量/响应时间计算公式?

QPS: 每秒查询率(Query Per Second) ,每秒的响应请求数,也即是最大吞吐能力。 QPS = req/sec = 请求数/秒 QPS统计方式 [一般使用 http_load 进行统计] QPS = 总请求数 / ( 进程总数 * 请求时间 ) QPS: 单个进程每秒请求服务器的成功次数 峰值QPS: 原理:每天80%的访问集中在20%的时间里,这20%时间叫做峰值时...
阅读(186) 评论(0)

科技公司都变成了数据公司:但你真的了解什么是“数据工程师”吗?

《美国数据工程概况》,来源 / Stitch Data,译者 / 黄谦、徐勇、王小佛、张耕、王心田、王挺、Raymond Yang。本文来自微信公众号“峰瑞资本”(微信号:freesvc),授权虎嗅发布,转载请联系原作者。推荐人:陈诚,DataPipeline 创始人,前 Yelp 数据工程师。 在和国内外顶尖公司交流的过程中,我发现他们多数都很骄傲有一支极其专业的数据团队。这些公司...
阅读(499) 评论(0)

如何成为一名真正的数据分析师或者数据工程师

原文  http://www.pm28.com/post-322.html 一.入门:高屋建瓴 数据分析的坑很大,一开始走上这条路,就要明确基本的方向,依托于核心的思想,不然只会越走越偏,最后觉得山太高水太深,不了了之。 1.数据与数据分析 数据其实就是对事物特征的定性指称以及量化描述,比如一个人的身份证号,年龄,收入,身高等就构成了一组数据:{id:0...
阅读(794) 评论(0)

TensorFlow练习13: 制作一个简单的聊天机器人

TensorFlow练习13: 制作一个简单的聊天机器人 现在很多卖货公司都使用聊天机器人充当客服人员,许多科技巨头也纷纷推出各自的聊天助手,如苹果Siri、Google Now、Amazon Alexa、微软小冰等等。前不久有一个视频比较了Google Now和Siri哪个更智能,貌似Google Now更智能。 本帖使用TensorFlow制作一个简单的聊天机器人。这个聊天...
阅读(834) 评论(0)

【开源】一个基于智能问答的聊天机器人实现

智能问答应当是未来智能化发展中人机交互的主要方式,目前无论是在开源社区或者企业应用中,都有广泛的应用。      项目名称是Iveely.Brain,本次源码可以在Github的这里下载,,是主要用于聊天服务的一个项目,本次开源版本的示例如下所示:             整个开源版本分为两种模式:本地模式和远程模式。本地模式是开发环境的调试模式,主要用于测试准确性问题;远程模式...
阅读(1292) 评论(0)

使用深度学习打造智能聊天机器人

/* 版权声明:可以任意转载,转载时请标明文章原始出处和作者信息 .*/                                                      author: 张俊林 聊天机器人(也可以称为语音助手、聊天助手、对话机器人等)是目前非常热的一个人工智能研发与产品方向。很多大的互联网公司重金投入研发相关技术,并陆续推出了相关产品,比如...
阅读(663) 评论(0)

HTTP 协议中的 Transfer-Encoding

HTTP 协议中的 Transfer-Encoding 文章目录 Persistent ConnectionContent-LengthTransfer-Encoding: chunked 本文作为我的博客「HTTP 相关」专题新的一篇,主要讨论 HTTP 协议中的 Transfer-Encoding。这个专题我会根据自己的理解,以尽量通俗的讲述,结合代码示例和实...
阅读(137) 评论(0)

TUTORIAL: MEASURING REVERBERATION TIME

TUTORIAL: MEASURING REVERBERATION TIME MARCH 4, 2014 LAWRENCE YULE 1 COMMENT The reverberation time of a room has a distinct effect on its suitability for different tasks, in this tuto...
阅读(215) 评论(0)

Boosting原理及其应用

Boosting原理及其应用 一、背景 故事:    某男到医院就诊,医生亲切地问了一些该男的症状,最后得出结论:“医生说我怀孕了。。。” 血淋淋的故事告诉我们:     需要一个好的诊断器:根据病人的一系列症状,得出病人患的是什么病。   实际上,这是一个分类问题。   分类问题很常见: 1) 博客男女 2) OCR 3) 情感分类 4) 查询意图识...
阅读(196) 评论(0)

Spatial Transformer Networks(空间变换神经网络)

闲扯:大数据不如小数据 这是一份很新的Paper(2015.6),来自于Google旗下的新锐AI公司DeepMind的四位剑桥Phd研究员。 他们针对CNN的特点,构建了一个新的局部网络层,称为空间变换层,如其名,它能将输入图像做任意空间变换。 在我的论文[深度神经网络在面部情感分析系统中的应用与改良]中,提出了一个有趣观点: 大数据不如小数据,如果大数据不能被模型有...
阅读(973) 评论(0)

A robot with a view—how drones and machines can navigate on their own [video]

Robots have captured our imaginations for more than 70 years. When you think about a robot, you might picture Rosie from the Jetsons or a robotic arm in a manufacturing facility. However, the next gen...
阅读(225) 评论(0)
157条 共8页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:116069次
    • 积分:1535
    • 等级:
    • 排名:千里之外
    • 原创:17篇
    • 转载:140篇
    • 译文:0篇
    • 评论:10条
    最新评论