# 优化了的过关键点的光滑曲线拟合算法

class CFoldPoint

{public:

double X;    double Y;

};

typedef CTypedPtrList CFoldPointList;

typedef CArray CDoubleArray;

void ZG(CDoubleArray *A,CDoubleArray *B,CDoubleArray *C,CDoubleArray *G,int &LOGI)
{
//追赶法
register long I;
int N;
N=A->GetSize();
if(LOGI==0)
{
(*C)[0]=(*C)[0]/(*B)[0];
for(I=1;I   {
(*B)[I]=(*B)[I]-(*A)[I]*(*C)[I-1];
(*C)[I]=(*C)[I]/(*B)[I];
}
(*A)[0]=0.;
(*C)[N-1]=0.;
LOGI=1;
}
(*G)[0]=(*G)[0]/(*B)[0];
for(I=1;I  {
(*G)[I]=((*G)[I]-(*A)[I]*(*G)[I-1])/(*B)[I];
}
for(I=N-2;I>-1;I--)//DO 30 I=N-1,1,-1
{
(*G)[I]=(*G)[I]-(*C)[I]*(*G)[I+1];
}
return;
}

void SPLine4(CDoubleArray *X,CDoubleArray *Y,double &XI,double&YI,CDoubleArray *A,CDoubleArray *B,CDoubleArray *C,CDoubleArray *G,int &LOGI,int MD)
{

register long I;
double W1,W2,H;
int N=X->GetSize();

if(LOGI==0)
{
for(I=1;I  {
(*B)[I]=(*X)[I]-(*X)[I-1];
(*C)[I]=((*Y)[I]-(*Y)[I-1])/(*B)[I];
}
for(I=1;I  {
(*A)[I]=(*B)[I]+(*B)[I+1];
(*G)[I]=6.*((*C)[I+1]-(*C)[I])/(*A)[I];
(*A)[I]=(*B)[I]/(*A)[I];
}
for(I=1;I  {
(*C)[I]=1.-(*A)[I];
(*B)[I]=2.;
}
(*B)[0]=2.;
(*B)[N-1]=2.;
if(MD==3)
{
(*C)[0]=-1.;
(*A)[N-1]=-1.;
(*A)[0]=0.;
(*C)[N-1]=0.;
}
ZG(A,B,C,G,LOGI);
}
for(I=1;I {
if(XI>=(*X)[I-1] && XI<=(*X)[I])//GE LE
{
H=(*X)[I]-(*X)[I-1];
W1=(*X)[I]-XI;
W2=XI-(*X)[I-1];
YI=W1*W1*W1*(*G)[I-1]/6./H;
YI=YI+W2*W2*W2*(*G)[I]/6./H;
YI=YI+W1*((*Y)[I-1]-(*G)[I-1]*H*H/6.)/H;
YI=YI+W2*((*Y)[I]-(*G)[I]*H*H/6.)/H;
}
}
}
void SPLine(CFoldPointList *pList,CFoldPointList *pDestList,int SM,int Continue=0)
{
POSITION pos;
CDoubleArray A,B,C,G,X,Y,T;
double XI,YI,XX,YY;
register long i;
long N;
int LOGI;
long RealSM;
long Bei,Yu;
CFoldPoint *pFold;
file://赋初值
N=pList->GetCount();
A.SetSize(N);
B.SetSize(N);
C.SetSize(N);
G.SetSize(N);
X.SetSize(N);
Y.SetSize(N);
T.SetSize(N);
RealSM=(N-1)*SM+N;
for(i=0;i {
pFold=pList->GetNext(pos);
X[i]=pFold->X;
Y[i]=pFold->Y;
}

pFoldTail=pList->GetTail();
{ file://闭
T[0]=0;
for(i=0;i  {
T[i+1]=T[i]+CalculateDistance(X[i],Y[i],X[i+1],Y[i+1])+0.000000001;
}
LOGI=0;
YI=0;
for(i=0;i  {
Bei=i/(SM+1);
Yu=i%(SM+1);
if(Yu!=0)
{
XI=T[Bei]+(T[Bei+1]-T[Bei])/(SM+1)*Yu;
SPLine4(&T,&Y,XI,YI,&A,&B,&C,&G,LOGI,3);
YY=YI;//+Y[Bei];
}
else
{
YY=Y[Bei];
}
pFold=new CFoldPoint;
pFold->Y=YY;
}
LOGI=0;
YI=0;
for(i=0;i  {
Bei=i/(SM+1);
Yu=i%(SM+1);
if(Yu!=0)
{
XI=T[Bei]+(T[Bei+1]-T[Bei])/(SM+1)*Yu;
SPLine4(&T,&X,XI,YI,&A,&B,&C,&G,LOGI,3);
YY=YI;//+X[Bei];
}
else
{
YY=X[Bei];
}
pFold=pDestList->GetNext(pos);
pFold->X=YY;
}
}
else if(Continue==1)
{
file://x连续
LOGI=0;
YI=0;
for(i=0;i  {
Bei=i/(SM+1);
Yu=i%(SM+1);
if(Yu!=0)
{
XI=X[Bei]+(X[Bei+1]-X[Bei])/(SM+1)*Yu;
SPLine4(&X,&Y,XI,YI,&A,&B,&C,&G,LOGI,3);
XX=XI;
YY=YI;
}
else
{
XX=X[Bei];
YY=Y[Bei];
}
pFold=new CFoldPoint;
pFold->X=XX;
pFold->Y=YY;
}
}
else
{
file://y连续
LOGI=0;
YI=0;
for(i=0;i  {
Bei=i/(SM+1);
Yu=i%(SM+1);
if(Yu!=0)
{
XI=Y[Bei]+(Y[Bei+1]-Y[Bei])/(SM+1)*Yu;
SPLine4(&Y,&X,XI,YI,&A,&B,&C,&G,LOGI,3);
XX=YI;
YY=XI;
}
else
{
XX=X[Bei];
YY=Y[Bei];
}
pFold=new CFoldPoint;
pFold->X=XX;
pFold->Y=YY;
}
}
return;
}

• 本文已收录于以下专栏：

## 曲线拟合

12.1 曲线拟合 12.1.1 曲线拟合的定义         曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系，...
• kuikuijia
• 2015年05月01日 00:40
• 7616

## Matlab将散点绘制为平滑曲线的两种方法

• SteelBasalt
• 2015年09月26日 22:32
• 26821

## 最小二乘法多项式曲线拟合原理与实现

• JairusChan
• 2012年04月27日 16:38
• 170615

## 算法系列之二十一：实验数据与曲线拟合

• orbit
• 2013年10月16日 22:17
• 57528

## 几个简单的数据点平滑处理算法

• liyuanbhu
• 2013年09月05日 13:29
• 83724

## 曲线平滑方法

• webzjuyujun
• 2015年11月06日 17:38
• 2332

## 预测算法——指数平滑法

• NIeson2012
• 2016年07月21日 12:59
• 30846

## 道格拉斯-普克抽稀算法 曲线平滑

switch(m_SmoothMode)        {        case0: //三点线性                        for(i=2+offsetpos;i...
• WINCOL
• 2010年12月28日 21:47
• 9586

## 经过已知离散点画平滑曲线算法（样条曲线插值法）

• hzsjun
• 2014年05月04日 09:19
• 4163

## 贝塞尔曲线函数 曲线平滑算法

• 2011年02月21日 14:26
• 1.88MB
• 下载

举报原因： 您举报文章：优化了的过关键点的光滑曲线拟合算法 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)