优化了的过关键点的光滑曲线拟合算法

原创 2000年12月22日 03:10:00

这个是我一个数学老师(教授,数学高手,经常自己做算法)给我的例子,用于多个离散点拟合光滑曲线的,他优化了追赶法,这个例子适用于闭合和不闭合两种情况。当时由于工程情况,写的急,代码不好看,但是很好用。为了方便传递参数,我做了一个链表,用时候根据自己情况可以修改,核心算法不动即可。

class CFoldPoint

{public:

    double X;    double Y;

};

typedef CTypedPtrList CFoldPointList;

typedef CArray CDoubleArray;

三个函数,SPLine 调用另外两个。用时候直接调用SPLine函数,入口pList是已知离散点链表,pDestList是生成的点的链表。SM是在两个点中间插入点的数目,continue=0是采样点无规律,要求生成闭合曲线。1是采样点x坐标连续 2是y连续

void ZG(CDoubleArray *A,CDoubleArray *B,CDoubleArray *C,CDoubleArray *G,int &LOGI)
{
 //追赶法
 register long I;
 int N;
 N=A->GetSize();
 if(LOGI==0)
 {
  (*C)[0]=(*C)[0]/(*B)[0];
   for(I=1;I   {
    (*B)[I]=(*B)[I]-(*A)[I]*(*C)[I-1];
   (*C)[I]=(*C)[I]/(*B)[I];
  }
  (*A)[0]=0.;
   (*C)[N-1]=0.;
   LOGI=1;
  }
  (*G)[0]=(*G)[0]/(*B)[0];
  for(I=1;I  {
   (*G)[I]=((*G)[I]-(*A)[I]*(*G)[I-1])/(*B)[I];
  }
  for(I=N-2;I>-1;I--)//DO 30 I=N-1,1,-1
  {
   (*G)[I]=(*G)[I]-(*C)[I]*(*G)[I+1];
  }
  return;
}

void SPLine4(CDoubleArray *X,CDoubleArray *Y,double &XI,double&YI,CDoubleArray *A,CDoubleArray *B,CDoubleArray *C,CDoubleArray *G,int &LOGI,int MD)
{
 
 register long I;
 double W1,W2,H;
 int N=X->GetSize();
 
 if(LOGI==0)
 {
  for(I=1;I  {
   (*B)[I]=(*X)[I]-(*X)[I-1];
   (*C)[I]=((*Y)[I]-(*Y)[I-1])/(*B)[I];
  }
  for(I=1;I  {
   (*A)[I]=(*B)[I]+(*B)[I+1];
   (*G)[I]=6.*((*C)[I+1]-(*C)[I])/(*A)[I];
   (*A)[I]=(*B)[I]/(*A)[I];
  }
  for(I=1;I  {
   (*C)[I]=1.-(*A)[I];
   (*B)[I]=2.;
  }
  (*B)[0]=2.;
  (*B)[N-1]=2.;
  if(MD==3)
  {
   (*C)[0]=-1.;
   (*A)[N-1]=-1.;
   (*A)[0]=0.;
   (*C)[N-1]=0.;
  }
  ZG(A,B,C,G,LOGI);
 }
 for(I=1;I {
  if(XI>=(*X)[I-1] && XI<=(*X)[I])//GE LE
  {
   H=(*X)[I]-(*X)[I-1];
   W1=(*X)[I]-XI;
   W2=XI-(*X)[I-1];
   YI=W1*W1*W1*(*G)[I-1]/6./H;
   YI=YI+W2*W2*W2*(*G)[I]/6./H;
   YI=YI+W1*((*Y)[I-1]-(*G)[I-1]*H*H/6.)/H;
   YI=YI+W2*((*Y)[I]-(*G)[I]*H*H/6.)/H;
  }
 }
}
void SPLine(CFoldPointList *pList,CFoldPointList *pDestList,int SM,int Continue=0)
{
 CFoldPoint *pFoldHead,*pFoldTail;
 POSITION pos;
 CDoubleArray A,B,C,G,X,Y,T;
 double XI,YI,XX,YY;
 register long i;
 long N;
 int LOGI;
 long RealSM;
 long Bei,Yu;
 CFoldPoint *pFold;
 file://赋初值
 N=pList->GetCount();
 A.SetSize(N);
 B.SetSize(N);
 C.SetSize(N);
 G.SetSize(N);
 X.SetSize(N);
 Y.SetSize(N);
 T.SetSize(N);
 RealSM=(N-1)*SM+N;
 pos=pList->GetHeadPosition();
 for(i=0;i {
  pFold=pList->GetNext(pos);
  X[i]=pFold->X;
  Y[i]=pFold->Y;
 }
 
 pFoldHead=pList->GetHead();
 pFoldTail=pList->GetTail();
 if(Continue==0)//pFoldHead->X==pFoldTail->X && pFoldHead->Y==pFoldTail->Y)
 { file://闭
  T[0]=0;
  for(i=0;i  {
   T[i+1]=T[i]+CalculateDistance(X[i],Y[i],X[i+1],Y[i+1])+0.000000001;
  }
  LOGI=0;
  YI=0;
  for(i=0;i  {
   Bei=i/(SM+1);
   Yu=i%(SM+1);
   if(Yu!=0)
   {
    XI=T[Bei]+(T[Bei+1]-T[Bei])/(SM+1)*Yu;
    SPLine4(&T,&Y,XI,YI,&A,&B,&C,&G,LOGI,3);
    YY=YI;//+Y[Bei];
   }
   else
   {
    YY=Y[Bei];
   }
   pFold=new CFoldPoint;
   pFold->Y=YY;
   pDestList->AddTail(pFold);
  }
  LOGI=0;
  YI=0;
  pos=pDestList->GetHeadPosition();
  for(i=0;i  {
   Bei=i/(SM+1);
   Yu=i%(SM+1);
   if(Yu!=0)
   {
    XI=T[Bei]+(T[Bei+1]-T[Bei])/(SM+1)*Yu;
    SPLine4(&T,&X,XI,YI,&A,&B,&C,&G,LOGI,3);
    YY=YI;//+X[Bei];
   }
   else
   {
    YY=X[Bei];
   }
   pFold=pDestList->GetNext(pos);
   pFold->X=YY;
  }
 }
 else if(Continue==1)
 {
  file://x连续
  LOGI=0;
  YI=0;
  for(i=0;i  {
   Bei=i/(SM+1);
   Yu=i%(SM+1);
   if(Yu!=0)
   {
    XI=X[Bei]+(X[Bei+1]-X[Bei])/(SM+1)*Yu;
    SPLine4(&X,&Y,XI,YI,&A,&B,&C,&G,LOGI,3);
    XX=XI;
    YY=YI;
   }
   else
   {
    XX=X[Bei];
    YY=Y[Bei];
   }
   pFold=new CFoldPoint;
   pFold->X=XX;
   pFold->Y=YY;
   pDestList->AddTail(pFold);
  }
 }
 else
 {
  file://y连续
  LOGI=0;
  YI=0;
  for(i=0;i  {
   Bei=i/(SM+1);
   Yu=i%(SM+1);
   if(Yu!=0)
   {
    XI=Y[Bei]+(Y[Bei+1]-Y[Bei])/(SM+1)*Yu;
    SPLine4(&Y,&X,XI,YI,&A,&B,&C,&G,LOGI,3);
    XX=YI;
    YY=XI;
   }
   else
   {
    XX=X[Bei];
    YY=Y[Bei];
   }
   pFold=new CFoldPoint;
   pFold->X=XX;
   pFold->Y=YY;
   pDestList->AddTail(pFold);
  }
 }
 return;
}

曲线拟合

12.1 曲线拟合 12.1.1 曲线拟合的定义         曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系,...
  • kuikuijia
  • kuikuijia
  • 2015年05月01日 00:40
  • 7616

Matlab将散点绘制为平滑曲线的两种方法

自然状态下,用plot画的是折线,而不是平滑曲线。 有两种方法可以画平滑曲线,第一种是拟合的方法,第二种是用spcrv,其实原理应该都一样就是插值。下面是源程序,大家可以根据需要自行选择,更改拟合的...
  • SteelBasalt
  • SteelBasalt
  • 2015年09月26日 22:32
  • 26821

最小二乘法多项式曲线拟合原理与实现

概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大...
  • JairusChan
  • JairusChan
  • 2012年04月27日 16:38
  • 170615

算法系列之二十一:实验数据与曲线拟合

曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系,是一种用解析表达式逼近离散数据的方法。曲线拟合通俗的说法就是“拉曲线”,也就是...
  • orbit
  • orbit
  • 2013年10月16日 22:17
  • 57528

几个简单的数据点平滑处理算法

最近在写一些数据处理的程序。经常需要对数据进行平滑处理。直接用FIR滤波器或IIR滤波器都有一个启动问题,滤波完成后总要对数据掐头去尾。因此去找了些简单的数据平滑处理的方法。 在一本老版本的《数学手...
  • liyuanbhu
  • liyuanbhu
  • 2013年09月05日 13:29
  • 83724

曲线平滑方法

一次指数平滑 公式:s[i] = alpha*x[i] +(1-alpha)*s[i-1] 分析:alpha月接近1,平滑后的数据月接近当前时间的数据值,这种情况下数据越不平滑;当alpha越接近0,...
  • webzjuyujun
  • webzjuyujun
  • 2015年11月06日 17:38
  • 2332

预测算法——指数平滑法

指数平滑法是生产预测中常用的一种方法。也用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。指数平滑法是移动平均法中的一种,其特点在于给过去的观测值不一样的权重,即较近期观测值的权数...
  • NIeson2012
  • NIeson2012
  • 2016年07月21日 12:59
  • 30846

道格拉斯-普克抽稀算法 曲线平滑

  switch(m_SmoothMode)        {        case0: //三点线性                        for(i=2+offsetpos;i...
  • WINCOL
  • WINCOL
  • 2010年12月28日 21:47
  • 9586

经过已知离散点画平滑曲线算法(样条曲线插值法)

一 样条概述 在绘图术语中样条是通过一组指定点集而生成平滑曲线的柔性带 。 术语 样条曲线 spline curve 绘制样条曲线的方法是给定一组称为控制点的坐标点,可以得到一条样条曲线。 ...
  • hzsjun
  • hzsjun
  • 2014年05月04日 09:19
  • 4163

贝塞尔曲线函数 曲线平滑算法

  • 2011年02月21日 14:26
  • 1.88MB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:优化了的过关键点的光滑曲线拟合算法
举报原因:
原因补充:

(最多只允许输入30个字)