最小二乘法曲线拟合

原创 2000年12月22日 03:14:00

//最小二乘法曲线拟合
typedef CArray<double,double>CDoubleArray;
BOOL CalculateCurveParameter(CDoubleArray *X,CDoubleArray *Y,long M,long N,CDoubleArray *A)
{
 //X,Y --  X,Y两轴的坐标
 //M   --  结果变量组数
 //N   --  采样数目
 //A   --  结果参数

 register long i,j,k;
 double Z,D1,D2,C,P,G,Q;
 CDoubleArray B,T,S;
 B.SetSize(N);
 T.SetSize(N);
 S.SetSize(N);
 if(M>N)M=N;
 for(i=0;i<M;i++)
  (*A)[i]=0;
 Z=0;
 B[0]=1;
 D1=N;
 P=0;
 C=0;
 for(i=0;i<N;i++)
 {
  P=P+(*X)[i]-Z;
  C=C+(*Y)[i];
 }
 C=C/D1;
 P=P/D1;
 (*A)[0]=C*B[0];
 if(M>1)
 {
  T[1]=1;
  T[0]=-P;
  D2=0;
  C=0;
  G=0;
  for(i=0;i<N;i++)
  {
   Q=(*X)[i]-Z-P;
   D2=D2+Q*Q;
   C=(*Y)[i]*Q+C;
   G=((*X)[i]-Z)*Q*Q+G;
  }
  C=C/D2;
  P=G/D2;
  Q=D2/D1;
  D1=D2;
  (*A)[1]=C*T[1];
  (*A)[0]=C*T[0]+(*A)[0];
 }
 for(j=2;j<M;j++)
 {
  S[j]=T[j-1];
  S[j-1]=-P*T[j-1]+T[j-2];
  if(j>=3)
  {
   for(k=j-2;k>=1;k--)
    S[k]=-P*T[k]+T[k-1]-Q*B[k];
  }
  S[0]=-P*T[0]-Q*B[0];
  D2=0;
  C=0;
  G=0;
  for(i=0;i<N;i++)
  {
   Q=S[j];
   for(k=j-1;k>=0;k--)
    Q=Q*((*X)[i]-Z)+S[k];
   D2=D2+Q*Q;
   C=(*Y)[i]*Q+C;
   G=((*X)[i]-Z)*Q*Q+G;
  }
  C=C/D2;
  P=G/D2;
  Q=D2/D1;
  D1=D2;
  (*A)[j]=C*S[j];
  T[j]=S[j];
  for(k=j-1;k>=0;k--)
  {
   (*A)[k]=C*S[k]+(*A)[k];
   B[k]=T[k];
   T[k]=S[k];
  }
 }
 return TRUE;
}

最小二乘法曲线拟合

//===================================================================================== //函数说明 ...
  • houxn22
  • houxn22
  • 2015年03月09日 17:18
  • 1353

对「曲线拟合」和「最小二乘法」的个人理解

在工程实践中,经常遇到类似的问题: 我们做了n次实验,获得了一组数据 然后,我们希望知道x和y之间的函数关系。所以我们将其描绘在XOY直角坐标系下,得到下面这么一张点云图: 然后,我...
  • chenmike16
  • chenmike16
  • 2016年11月20日 13:30
  • 560

最小二乘法曲线拟合原理与实现

参考文章http://blog.csdn.net/jairuschan/article/details/7517773最小二乘学习法是对模型的输出和训练集输出的平方误差为最小时的参数进行学习,式中之所...
  • lfdanding
  • lfdanding
  • 2016年02月25日 19:27
  • 6802

最小二乘法曲线拟合 C语言实现

简单思路如下: 1,采用目标函数对多项式系数求偏导,得到最优值条件,组成一个方程组; 2,方程组的解法采用行列式变换(两次变换:普通行列式——三角行列式——对角行列式——求解),行列式的求解算法上...
  • andylao62
  • andylao62
  • 2014年04月26日 11:55
  • 15931

最小二乘法多项式拟合的Java实现

背景 由于项目中需要根据磁盘的历史使用情况预测未来一段时间的使用情况,决定采用最小二乘法做多项式拟合,这里简单描述下: 假设给定的数据点和其对应的函数值为 (x1, y1), (x2, y2), ...
  • funnyrand
  • funnyrand
  • 2015年07月03日 15:47
  • 6505

多项式曲线拟合最小二乘法

多项式插值法
  • zb1165048017
  • zb1165048017
  • 2015年09月10日 21:57
  • 3508

最小二乘曲线拟合——C语言算法实现一

给定一组数据,我们要对这组数据进行曲线拟合
  • beijingmake209
  • beijingmake209
  • 2014年05月29日 20:45
  • 5434

最小二乘曲线拟合——C语言算法实现二

最小二乘曲线拟合
  • beijingmake209
  • beijingmake209
  • 2014年05月30日 14:52
  • 3039

最小二乘法完成曲线拟合公式

设(x1, y1), (x2,y2), ...(xk,yk)为输入样本,注意这里的xi本身是一个向量。 假设拟合多项式为: 则通过使用下面的最小平方差拟合方法: 可得: ...
  • abcd_d_
  • abcd_d_
  • 2014年10月08日 15:40
  • 3263

最小二乘法曲线拟合以及Matlab实现

最小二乘法曲线拟合以及Matlab实现 在实际工程中,我们常会遇到这种问题:已知一组点的横纵坐标,需要绘制出一条尽可能逼近这些点的曲线(或直线),以进行进一步进行加工或者分析两个变量之间的相互关系。...
  • StupidAutofan
  • StupidAutofan
  • 2017年12月28日 17:31
  • 65
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:最小二乘法曲线拟合
举报原因:
原因补充:

(最多只允许输入30个字)