每周荐书:SLAM、Vue2、爬虫(评论送书)

每周荐书:SLAM、Vue2、爬虫(评论送书) 移动互联网、大数据、人工智能等新技术浪潮在不断冲击着我们,为了拓展我们的学习路线,小编每周为大家推荐一本IT技术新书,以弥补扑面而来的各类技术热点知识。 在文末评论里回复你对本周推荐图书的看法,或想要获得某本书的书名及理由,下期荐书更新时,会在本期评论中选出3名优秀评论可以免费获得此书。 《视觉SLAM十四讲:从理论到实践》 《Vue2实践揭秘》 《网络爬虫全解析——技术、原理与实践》...
阅读(6530) 评论(78)

为Vue2集成UIkit

Vue只是为我们提供了一个很优秀的前端组件式开发框架,但单纯依靠Vue是做不出一个漂亮的网页应用的,甚至连“不难看”这个标准都达不到。这个时候借助界面框架UIkit能够很好地解决这一问题。 本文出自《 Vue只是为我们提供了一个很优秀的前端组件式开发框架,但单纯依靠Vue是做不出一个漂亮的网页应用的,甚至连“不难看”这个标准都达不到。这个时候借助界面框架UIkit能够很好地解决这一问题。 本文出自《Vue2实践揭秘》一书。2实践揭秘》一书。...
阅读(2047) 评论(1)

磁盘:最容易被忽略的性能洼地

从整个软件的性能来说,资源类性能就像是撑起冰山一角的下面的冰层。构成这部分的,是传统部分的磁盘、CPU、内存和网络以及因为移动网络而显得特别重要的电池(耗电)。本文我们将向您着重介绍磁盘部分。 本文选自《Android移动性能实战》。...
阅读(2320) 评论(1)

揭秘Spark应用性能调优

在多台机器上分布数据以及处理数据是Spark的核心能力,即我们所说的大规模的数据集处理。为了充分利用Spark特性,应该考虑一些调优技术。本文每一小节都是关于调优技术的,并给出了如何实现调优的必要步骤。 本文选自《Spark GraphX实战》。...
阅读(732) 评论(0)

探索通用可编程数据平面

相比传统网络数据平面,通用可编程数据平面让网络用户可以自定义数据包的完整处理流程,实现理想的协议无关网络数据处理。作为一种理想的SDN数据平面,通用可编程数据平面还不够完善,还需要在不断的尝试中摸索前进。 本文选自《重构网络:SDN架构与实现》。...
阅读(152890) 评论(1)

我们为什么需要SDN?

SDN为什么会出现?是什么原因使得学术界提出SDN?我们为什么需要SDN?如果你刚接触SDN方案时,你一定有这样的疑问。而问题的答案是:我们需要拥有更多可编程能力的网络,来支持快速增长的网络业务需求。本文选自《重构网络:SDN架构与实现》。...
阅读(4899) 评论(0)

用结构化思维策划一个会议

一个复杂问题进行拆分,最后会形成一个数量巨大的细分问题群。如果没有严格的按照“逐层不漏不重”原则进行,细分出的问题将很难形成合力来完整有效地支撑解决原问题。本文以策划一个会议为例,来了解结构化思维的应用。 本文选自《数源思维:业务导向的数据思维秘籍》。...
阅读(2766) 评论(0)

sklearn:Python语言开发的通用机器学习库

深入理解机器学习并完全看懂sklearn文档,需要较深厚的理论基础。但是,要将sklearn应用于实际的项目中,只需要对机器学习理论有一个基本的掌握,就可以直接调用其API来完成各种机器学习问题。 本文选自《全栈数据之门》,将向你介绍通过三个步骤来解决具体的机器学习问题。...
阅读(2265) 评论(1)

Spark:超越Hadoop MapReduce

和 Hadoop 一样,Spark 提供了一个 Map/Reduce API(分布式计算)和分布式存储。二者主要的不同点是,Spark 在集群的内存中保存数据,而 Hadoop 在集群的磁盘中存储数据。 本文选自《SparkGraphX实战》。...
阅读(1934) 评论(0)

标准库举例:sys、copy

Python标准库内容非常多,有人专门为此写过一本书。本文将选择几个呈现出来,一来显示标准库之强大功能,二来演示如何理解和使用标准库。sys是常用的标准库,已经不陌生了;copy也是已经用过的标准库。先从熟悉的入手,容易理解,这也是“杀熟”。本文选自《跟老齐学Python:轻松入门》。...
阅读(1514) 评论(0)

强者联盟——Python语言结合Spark框架

Spark由AMPLab实验室开发,其本质是基于内存的快速迭代框架,“迭代”是机器学习最大的特点,因此非常适合做机器学习。得益于在数据科学中强大的表现,Python语言的粉丝遍布天下,如今又遇上强大的分布式内存计算框架Spark,两个领域的强者走到一起,自然能碰出更加强大的火花(Spark可以翻译为火花),因此本文主要讲述了PySpark。 本文选自《全栈数据之门》。...
阅读(3229) 评论(1)

Python强大的自有模块——标准库

Python的强大体现在“模块自信”上,因为Python不仅有很强大的自有模块(标准库),还有海量的第三方模块(或者包、库),并且很多开发者还在不断贡献在自己开发的新模块(或者包、库)。本文将向大家概述介绍Python的自有模块——标准库。 本文选自《跟老齐学Python:轻松入门》。...
阅读(2250) 评论(3)

从G1设计到堆空间调整

G1垃圾收集器采用一个略微不同的手段来解决并行、串行以及CMS GC的众多缺陷。对于大的Java堆来说,通过将Java堆拆分成一个个分区,G1会比其他垃圾收集器有更好的综合表现。 本文选自《Java性能调优指南》。...
阅读(948) 评论(0)

Garbage First(G1)垃圾收集器

G1垃圾收集器采用一个略微不同的手段来解决并行、串行以及CMS GC的众多缺陷。对于大的Java堆来说,通过将Java堆拆分成一个个分区,G1会比其他垃圾收集器有更好的综合表现。 本文选自《Java性能调优指南》。...
阅读(685) 评论(0)

数据工作本质:从业务中来,到业务中去

数据工作就组成结构和流程来说还是比较简单的,因为这个工作本来就很年轻,分工还没有很细。总体来讲,我把数据工作看成相互连接的三部分:取数、理数、用数,这是一个闭环。用数的需求会驱动取数工作,并对取数工作提出具体操作性要求。 《数源思维》一书正是以此本质为核心内容,提出了一套简便实用的方法来实现对数据工作价值的把控。...
阅读(1551) 评论(2)
1523条 共102页首页 上一页 ... 6 7 8 9 10 ... 下一页 尾页
    个人资料
    • 访问:3474108次
    • 积分:52372
    • 等级:
    • 排名:第58名
    • 原创:1439篇
    • 转载:83篇
    • 译文:1篇
    • 评论:3506条
    博客专栏
    最新评论