hdu1003 Max Sum

Max Sum

Problem Description

Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given

(6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.


Input

The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines

follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between

-1000 and 1000).


Output

For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The

second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end

position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two

cases.


Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5


AC code(DP求解)

#include<stdio.h>

int main()
{
	int T;
	int k;
	scanf("%d", &T);

	for (k = 1; k <= T; k++)
	{
		int N;
		int a;
		int i;
		int start, end, pos;
		int temp, result;

		scanf("%d", &N);
		scanf("%d", &a);

		start = end = pos = 0;
		temp = result = a;

		for (i = 1; i < N; i++)
		{
			scanf("%d", &a);
			if (temp + a < a)
			{
				temp = a;
				pos = i;
			}
			else
			{
				temp += a;
			}
			if (temp > result)
			{
				result = temp;
				start = pos;
				end = i;
			}
		}
		printf("Case %d:\n", k);
		printf("%d %d %d\n", result, start+1, end+1);
		if (k != T)
			printf("\n");
	}

	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值