10099 - The Tourist Guide

原创 2016年08月30日 21:35:03

题目大意:

找出从起点到终点路径最小边的最大值

这题有一个陷阱,假设最大值为max,则每次运输的人数只能为max-1,因为每次导游要包含在运输人数里


思路:

贪心+最大生成树kruskal算法


每次找最大的一条边,如果这条边连接了两棵不同的树,则合并这两棵树,直到起点与终点联通,则当前边的值即为最小边的最大值


kruskal算法代码如下:(AC)

#include<iostream>
#include<stdio.h>
#include<algorithm>
using namespace std;
#define MAXIN 10009

struct edge {
	int u, v, w;
}e[MAXIN];
int N, R, S, D, T;
int f[110];

bool cmp(const edge& e1, const edge& e2)
{
	return e1.w > e2.w;
}

int father(int n)
{
	return n == f[n] ? n : f[n] = father(f[n]);
}

int Kruskal()
{
	for (int i = 1; i <= N; i++)
		f[i] = i;

	sort(e, e + R, cmp);

	for (int i = 0; i < R; i++)
	{
		int l, r;
		l = father(e[i].u);
		r = father(e[i].v);
		if (l != r)
		{
			f[l] = r;
			if (father(S) == father(D))
				return e[i].w;
		}

	}
	return 0;

}


int main()
{
	int cas = 0;
	for (;;)
	{
		cin >> N >> R;
		if (!N && !R)return 0;
		cas++;
		for (int i = 0; i < R; i++)
		{
			cin >> e[i].u >> e[i].v >> e[i].w;
		}
		cin >> S >> D >> T;

		int cap = Kruskal() - 1;
		int ans = 0, total = 0;
		while (ans < T)
		{
			ans += cap;
			total++;
		}
		cout << "Scenario #" << cas << endl;
		cout << "Minimum Number of Trips = " << total << endl<<endl;
	}

}

kruskal算法的核心步骤:

每个点为一颗单独的树  f[i]=i

边排序

由大到小处理每一条边


很容易犯的一个错误就是f[n]的使用与father(n)使用的混淆,一定要想清楚什么时候是f[n],什么时候是father[n]


其实我一开始不是这么想的。

开始我的想法是求出每一条路径,记录路径上的最小边,取最小边中最大的那一个。

那么怎么历遍每一条路径呢?我用的是DFS算法,可是提交时产生了运行超时的错误。

毕竟如果深度太深DFS速度就会比较慢。


这个代码写的时候要特别注意,每次DFS递归完时,要把当前点的visit重新置为0,否则可能不会历遍每一条路径。

代码如下:

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;


int G[100][100],visit[100];
int N, R,S, D, T,cap;
int cas = 0;

void DFS(int s,int d,int m)
{
	if (s == d)
	{
		cap = cap > m ? cap : m;
		return;
	}

	visit[s] = 1;
	for(int i=1;i<=N;i++)
		if (G[s][i]&&!visit[i])
		{
			if (G[s][i] < m)
			   DFS(i, d, G[s][i]);
			else
			  DFS(i, d, m);
		}
	visit[s] = 0;
}

void Init()
{
    memset(G, 0, sizeof(G));
    memset(visit, 0, sizeof(visit));
    for (int i = 0; i < R; i++)
    {
        int x, y,z;
        cin >> x >> y >> z;
        G[y][x] = G[x][y] = z;
    }
    cin >> S >> D >> T;

    cap = -(1 << 20);
}

void solve()
{

    int ans = 0; int j = 0;
    while (ans < T)
    {
        ans += (cap-1);
        j++;
    }

    cas++;
    cout << "Scenario #" << cas << endl;
    cout << "Minimum Number of Trips = " << j << endl;

}

int main()
{

	freopen("c:\\data\\10099.txt", "r", stdin);


	for (;;)
	{
		cin >> N >> R;
		if (N == 0 && R == 0)return 0;
		Init();
		DFS(S, D,1<<20);
        solve();

	}
}




版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

uva 10099 The Tourist Guide

点击打开链接uva 10099 题目意思: 有一个旅游团现在去出游玩,现在有n个城市,m条路。由于每一条路上面规定了最多能够通过的人数,现在想问这个旅游团人数已知的情况下最少需要运送几趟 ...

UVaOJ 10099 - The Tourist Guide

——by A Code Rabbit Description 在一个旅游景点。 一个旅游团伙,要从一个点到另一个点。 但是旅游景点上的每一条路,都有限制车载人数上限。 输入旅游景点的...

Uva 10099 - The Tourist Guide

2Y Floyd简易变形 注意这个导游也要走 有效边权值减一,测试用例很和谐=.= 还有第一次忘记回车了=.= #include #define INF (int)1e9 int g[110...

PC/UVa 110903/10099 The Tourist Guide & UVa 10048 Audiophobia

一开始用深搜去做这道题,可能是剪枝没有写好吧, 超时了。后来看了一下别人的题解,发现可以用动态规划来做,其想法和floyd算法的动态规划想法差不多,而这里的问题则转变为:找出任意两点之间最小权边的最大...

UVa Prolbem 10099 The Tourist Guide (导游)

// The Tourist Guide (导游) // PC/UVa IDs: 110903/10099, Popularity: B, Success rate: average Level: 3...

UVA - 10099 The Tourist Guide (floyd+dp)

题目大意: 有一个导游,要带领团队从当前点,走到目标点,但是每条路一次性通过的人有数量限制,所以需要分批次进行。问最少需要分多少次进行。 那么每次可以运输的人数由当前路程,最小的可以通过的人数决定...

UVa - 10099 The Tourist Guide 并查集+贪心

【问题描述】 Mr.he有一家旅游公司。他得当前任务是带一些游客去一个遥远的城市。一些城市之间有双向道路。每对相邻城市之间都有一条高速公路,每条路线规定了自己的最大乘客数目。Mr.he有一份包含城市...

10099 - The Tourist Guide//floyd

Problem D The Tourist Guide Input: standard input Output: standard output   Mr. G. works as a t...

110903 The Tourist Guide

#include #include #include #include using namespace std; class TouristGuid { public: TouristG...

programming-challenges The Tourist Guide (110903) 题解

这片文章讲的思路很清晰。当然,用bfs也是一样可以解决这个问题的。最坑的是每次过不要忘记导游自己也占了一个名额。我就是想了好久都不明白为什么示例的答案是5而不是4,把导游忘了。 http://www...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)