关闭

【机器学习算法-python实现】扫黄神器-朴素贝叶斯分类器的实现

标签: 机器学习python贝叶斯
16808人阅读 评论(3) 收藏 举报
分类:

(转载请注明出处:http://blog.csdn.net/buptgshengod)

1.背景

     以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去。嗯,现在终于用到了。朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到。核心思想就是找出特征值对结果影响概率最大的项。公式如下:
P(A|B) = \frac{P(B | A)\, P(A)}{P(B)}
       什么是朴素贝叶斯,就是特征值相互独立互不影响的情况。贝叶斯可以有很多变形,这里先搞一个简单的,以后遇到复杂的再写。

2.数据集

   摘自机器学习实战。

[['my','dog','has','flea','problems','help','please'],    0

 ['maybe','not','take','him','to','dog','park','stupid'],  1

 ['my','dalmation','is','so','cute','I','love','him'],          0

 ['stop','posting','stupid','worthless','garbage'],          1

 ['mr','licks','ate','my','steak','how','to','stop','him'],  0

['quit','buying','worthless','dog','food','stupid']]           1


以上是六句话,标记是0句子的表示正常句,标记是1句子的表示为粗口。我们通过分析每个句子中的每个词,在粗口句或是正常句出现的概率,可以找出那些词是粗口。

3.代码

   
#以矩阵形式创建数据集
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not   
    return postingList,classVec

#将矩阵内容添加到列表,set获取list中不重复的元素
def createVocabList(dataSet):
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets
    return list(vocabSet)


#判断list中每个词在总共词语list中的位置
def setOfWords2Vec(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] = 1
        else: print "the word: %s is not in my Vocabulary!" % word
    return returnVec


def trainNB0(trainMatrix,trainCategory):
    numTrainDocs = len(trainMatrix)
    
    numWords = len(trainMatrix[0])
    
    pAbusive = sum(trainCategory)/float(numTrainDocs)#脏句的比例 
    p0Num = zeros(numWords); p1Num = zeros(numWords) #zero是numpy带的函数,zeros(i)长度为i的list          
    p0Denom = 0.0; p1Denom = 0.0                        
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:#如果是粗口句,每个词在p1num加一
            p1Num += trainMatrix[i]
            p1Denom += sum(trainMatrix[i])
        else:
            p0Num += trainMatrix[i]
            p0Denom += sum(trainMatrix[i])
           
    p1Vect = p1Num/p1Denom          #粗口字概率
    p0Vect = p0Num/p0Denom         
    return p0Vect,p1Vect,pAbusive

实现效果:

输出粗口字概率list:

[ 0.          0.          0.          0.05263158  0.05263158  0.          0.

  0.          0.05263158  0.05263158  0.          0.          0.

  0.05263158  0.05263158  0.05263158  0.05263158  0.05263158  0.

  0.10526316  0.          0.05263158  0.05263158  0.          0.10526316

  0.          0.15789474  0.          0.05263158  0.          0.          0.        ]


出现概率最大项:

0.157894736842


对应的词是:stupid

['cute', 'love', 'help', 'garbage', 'quit', 'I', 'problems', 'is', 'park', 'stop', 'flea', 'dalmation', 'licks', 'food', 'not', 'him', 'buying', 'posting', 'has', 'worthless', 'ate', 'to', 'maybe', 'please', 'dog', 'how', 'stupid', 'so', 'take', 'mr', 'steak', 'my']



4.下载

2
2
查看评论

机器学习及python实现——朴素贝叶斯分类器

问题引入 考虑构建一个垃圾邮件分类器,通过给定的垃圾邮件和非垃圾邮件的数据集,通过机器学习构建一个预测一个新的邮件是否是垃圾邮件的分类器。邮件分类器是通常的文本分类器中的一种。 朴素贝叶斯方法 贝叶斯假设 假设当前我们已经拥有了一批标识有是垃圾邮件还是非垃圾邮件的数据集,然后我们来构建一个分...
  • Linkin_ygw
  • Linkin_ygw
  • 2017-05-05 14:17
  • 634

Python实现朴素贝叶斯分类器

# -*-coding:utf-8-*- '''     朴素贝叶斯算法 ''' from __future__ import division  global className classN...
  • u012293522
  • u012293522
  • 2015-05-26 17:07
  • 1194

机器学习算法-朴素贝叶斯Python实现

引文:前面提到的K最近邻算法和决策树算法,数据实例最终被明确的划分到某个分类中,下面介绍一种不能完全确定数据实例应该划分到哪个类别,或者说只能给数据实例属于给定分类的概率。基于贝叶斯决策理论的分类方法之朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为...
  • Dream_angel_Z
  • Dream_angel_Z
  • 2015-05-28 12:59
  • 5657

机器学习实战——python实现简单的朴素贝叶斯分类器

基础公式 贝叶斯定理:P(A|B) = P(B|A)*P(A)/P(B) 假设B1,B2…Bn彼此独立,则有:P(B1xB2x…xBn|A) = P(B1|A)xP(B2|A)x…xP(Bn|A) 数据(虚构) A1 A2 A3 A4 A5 B 1 1 1 1 3 no 1...
  • chenge_j
  • chenge_j
  • 2017-05-11 12:31
  • 855

《机器学习实战》基于朴素贝叶斯分类算法构建文本分类器的Python实现

关于朴素贝叶斯分类算法的理解请参考:http://blog.csdn.net/gamer_gyt/article/details/47205371 Python代码实现: #encoding:utf-8 from numpy import * #词表到向量的转换函数 def loa...
  • Gamer_gyt
  • Gamer_gyt
  • 2015-08-22 17:05
  • 4362

机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素...
  • suipingsp
  • suipingsp
  • 2014-12-12 19:35
  • 15015

朴素贝叶斯分类器本质上是线性分类器

朴素贝叶斯分类器是一种应用贝叶斯定理的分类器。线性分类器是通过特征的线性组合来做出分类决定的分类器。本质上,朴素贝叶斯分类器是一种线性分类器。朴素贝叶斯分类器是建立在属性变量相互独立的基础上,后验概率为判定准则的分类器。下面不等式成立,样例[Math Processing Error]为正类;否...
  • u012556077
  • u012556077
  • 2016-02-08 20:40
  • 608

OpenCV实现朴素贝叶斯分类器诊断病情

贝叶斯定理由英国数学家托马斯.贝叶斯(Thomas Baves)在1763提出,因此得名贝叶斯定理。贝叶斯定理也称贝叶斯推理,是关于随机事件的条件概率的一则定理。 对于两个事件A和B,事件A发生则B也发生的概率记为P(B|A),事件B发生则A也发生的概率记为P(A|B),这样如果A发生B也必然发生或...
  • dcrmg
  • dcrmg
  • 2016-11-03 23:17
  • 1173

朴素贝叶斯分类器——机器学习算法(二)

自从 AlphaGo 掀人工智能的巨大热潮之后,我便对人工智能产生了极大的兴趣。在人工智能各种算法面前,我有一种深深的无力感,一边在网络上了解TensorFlow、Caffe等大公司开源的框架,一边重新翻阅温习高数、概率的知识,一边死磕入门书籍中如决策树、神经网络、深度学习等等概念,就是为了有朝一日...
  • a727911438
  • a727911438
  • 2017-03-18 00:48
  • 649

贝叶斯分类器(一):朴素贝叶斯分类器与半朴素贝叶斯分类器

贝叶斯分类器理论知识。包括贝叶斯决策论,朴素贝叶斯分类器,半朴素贝叶斯分类器。
  • rongrongyaofeiqi
  • rongrongyaofeiqi
  • 2016-11-09 15:28
  • 3437
    我的微信公众号

    作者公众号:凡人机器学习

    凡人机器学习

    机器学习微信交流群
    为了方便大家学习与交流,凡人云近日已开通机器学习社群! 分享“凡人机器学习”公众号名片到40人以上的大群并截图给小助手,小助手就会拉你入群 在这里你可以得到: 1.各种学术讨论 2.最新的资料分享 3.不定期的征文以及联谊活动! 小助手微信号:meiwznn
    作者新书《机器学习实践应用》

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    个人资料
    • 访问:841251次
    • 积分:11242
    • 等级:
    • 排名:第1686名
    • 原创:236篇
    • 转载:40篇
    • 译文:0篇
    • 评论:460条
    博客专栏
    统计