[置顶] 【机器学习PAI实践四】如何实现金融风控

标签: 机器学习算法数据
2260人阅读 评论(0) 收藏 举报
分类:

(本文数据为虚构,仅供实验)

一、背景

本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。
本文的业务场景如下:
下图是已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事关系或者亲人关系等。已知“Enoch”是信用用户,”Evan”是欺诈用户,计算出其它人的信用指数。通过图算法,可以算出图中每个人是欺诈用户的概率,这个数据可以方便相关机构做风控。

二、数据集介绍

数据源:本文数据为自己生成,用于实验。
具体字段如下:

字段名 含义 类型 描述
start_point 边的起始节点 string
end_point 边结束节点 string
count 关系紧密度 double 数值越大,两人的关系越紧密

数据截图:

三、数据探索流程

首先,实验流程图:

1.最大联通子图

最大联通子图的功能很好理解,前面已经介绍了,图算法的输入数据是关系图谱结构的。最大联通子图可以找到有通联关系的最大集合,在团伙发现的场景中可以排除掉一些与风控场景无关的人。本次实验通过“最大联通子图”组件将数据中的群体分为两部分,并赋予group_id。通过“SQL脚本”组件和“JOIN”组件去除下图中的无关联人员。

2.单源最短路径

通过“单源最短路径”组件探查出每个人的一度人脉、二度人脉关系等。distance讲的是“Enoch”通过几个人可以联络到目标人。
如下图:

3.标签传播分类

“标签传播分类”算法为半监督的分类算法,原理是用已标记节点的标签信息去预测未标记节点的标签信息。在算法执行过程中,每个节点的标签按相似度传播给相邻节点。
调用“标签传播分类”组件除了要有所有人员的通联图数据以外,还要有人员打标数据。这里通过“已知数据-读odps”组件导入打标数据(weight表示目标是欺诈用户的概率):

通过SQL对结果进行筛选,最终结果展现的是每个人涉嫌欺诈的概率,数值越大表示是欺诈用户的概率越大。

四、其它

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    我的微信公众号

    作者公众号:凡人机器学习

    凡人机器学习

    机器学习微信交流群
    为了方便大家学习与交流,凡人云近日已开通机器学习社群! 分享“凡人机器学习”公众号名片到40人以上的大群并截图给小助手,小助手就会拉你入群 在这里你可以得到: 1.各种学术讨论 2.最新的资料分享 3.不定期的征文以及联谊活动! 小助手微信号:meiwznn
    作者新书《机器学习实践应用》

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    个人资料
    • 访问:758352次
    • 积分:10380
    • 等级:
    • 排名:第1802名
    • 原创:226篇
    • 转载:39篇
    • 译文:0篇
    • 评论:452条
    博客专栏
    统计