关闭

【机器学习PAI实践四】如何实现金融风控

标签: 机器学习算法数据
2853人阅读 评论(0) 收藏 举报
分类:

(本文数据为虚构,仅供实验)

一、背景

本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。
本文的业务场景如下:
下图是已知的一份人物通联关系图,每两个人之间的连线表示两人有一定关系,可以是同事关系或者亲人关系等。已知“Enoch”是信用用户,”Evan”是欺诈用户,计算出其它人的信用指数。通过图算法,可以算出图中每个人是欺诈用户的概率,这个数据可以方便相关机构做风控。

二、数据集介绍

数据源:本文数据为自己生成,用于实验。
具体字段如下:

字段名 含义 类型 描述
start_point 边的起始节点 string
end_point 边结束节点 string
count 关系紧密度 double 数值越大,两人的关系越紧密

数据截图:

三、数据探索流程

首先,实验流程图:

1.最大联通子图

最大联通子图的功能很好理解,前面已经介绍了,图算法的输入数据是关系图谱结构的。最大联通子图可以找到有通联关系的最大集合,在团伙发现的场景中可以排除掉一些与风控场景无关的人。本次实验通过“最大联通子图”组件将数据中的群体分为两部分,并赋予group_id。通过“SQL脚本”组件和“JOIN”组件去除下图中的无关联人员。

2.单源最短路径

通过“单源最短路径”组件探查出每个人的一度人脉、二度人脉关系等。distance讲的是“Enoch”通过几个人可以联络到目标人。
如下图:

3.标签传播分类

“标签传播分类”算法为半监督的分类算法,原理是用已标记节点的标签信息去预测未标记节点的标签信息。在算法执行过程中,每个节点的标签按相似度传播给相邻节点。
调用“标签传播分类”组件除了要有所有人员的通联图数据以外,还要有人员打标数据。这里通过“已知数据-读odps”组件导入打标数据(weight表示目标是欺诈用户的概率):

通过SQL对结果进行筛选,最终结果展现的是每个人涉嫌欺诈的概率,数值越大表示是欺诈用户的概率越大。

四、其它

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

0
0
查看评论

机器学习如何与传统行业结合?金融领域可能是最大风口

微信公众号 关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第一 【Python】:排名第三 【算法】:排名第四 《金融信贷风控的机器学习实战》 原价     ¥ 899.00  ...
  • Mbx8X9u
  • Mbx8X9u
  • 2017-11-30 00:00
  • 193

【机器学习PAI实践四】如何实现金融风控

(本文数据为虚构,仅供实验)一、背景本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传...
  • gshengod
  • gshengod
  • 2017-04-18 17:08
  • 2853

【智能金融】机器学习在风控领域的应用

文 | 婉龙 Fintech科普大使 | 带你秒懂Fintech 大数据风控起源于互联网金融的兴起 有人会把大数据比喻成 “新时代的石油”。业界也有句话叫,得数据者得天下。现如今,在大数据时代下,数据比以往任何时候都更加根植于我们生活的每个角落。 其实早在上世纪80年代,大数据就被著名未来学...
  • np4rHI455vg29y2
  • np4rHI455vg29y2
  • 2017-11-19 00:00
  • 347

【机器学习PAI实践五】机器学习眼中的《人民的名义》

一、背景 最近热播的反腐神剧“人民的名义”掀起来一波社会舆论的高潮,这部电视剧之所能得到广泛的关注,除了老戏骨们精湛的演技,整部剧出色的剧本也起到了关键的作用。笔者在平日追剧之余,也尝试通过机器学习算法对人民的名义的部分剧集文本内容进行了文本分析,希望从数据的角度得到一些输入。本文使用阿里云机器学...
  • gshengod
  • gshengod
  • 2017-05-04 10:25
  • 2929

机器学习引领智慧金融,变革万亿规模实时支付风控模式

随着我国银行业全面开放和深化改革,互联网金融的不断发展以及电子银行、手机银行交易系统的全面铺开,与这些全新业务模式相伴而生的欺诈风险也在频繁发生。各类跨业务、跨条线的欺诈风险更是层出不穷。 作者 | 亚信数据  官网 | www.datayuan.cn 微信公众号...
  • YMPzUELX3AIAp7Q
  • YMPzUELX3AIAp7Q
  • 2017-10-17 00:00
  • 482

金融风控-->申请评分卡模型-->申请评分卡介绍

从这篇博文开始,我将总结金融风控中的另外一个模型:申请评分卡模型。这篇博文将主要来介绍申请评分卡的一些基本概念。本篇博文将以以下四个主题来进行介绍说明: 信用风险和评分卡模型的基本概念 申请评分卡在互联网金融业的重要性和特性 贷款申请环节的数据介绍和描述 非平衡样本问题的定义和解决方法 信用风险和评...
  • Mr_tyting
  • Mr_tyting
  • 2017-07-14 10:52
  • 4457

互联网金融时代下机器学习与大数据风控系统

机器学习在互联网金融行业中的应用在企业数据的应用的场景下,人们最常用的主要是监督学习和无监督学习的模型,在金融行业中一个天然而又典型的应用就是风险控制中对借款人进行信用评估。因此互联网金融企业依托互联网获取用户的网上消费行为数据、通讯数据、信用卡数据、第三方征信数据等丰富而全面的数据,可以借助机器学...
  • u011437229
  • u011437229
  • 2016-11-16 17:10
  • 402

互联网金融系统技术沙龙:小米风控实践

互联网金融系统技术沙龙:小米风控实践 原创 2016-06-24 邓文俊 高可用架构 导读:最近上映的魔兽世界有一句话“光明源于黑暗,黑暗涌现光明”,和互联网金融的安全风控领域非常相似。在 6 月 19 日,微博商业产品部联合小米支付等金融技术团队策划了...
  • javastart
  • javastart
  • 2016-06-27 13:21
  • 1399

AI改变金融风控,深度学习技术可以将坏账降低35% | 干货

昨天在风控群内,大家都在讨论平安普惠COO的观点,“在放贷领域,只有0和1的概念,要么借要么不借”,有人说,0和1的概念肯定不适用于贷款审批,信贷审批是多维评判的,没有不能贷的客户,只有不能贷的机制;也有人说,风险定价、风险补偿机制就是用来在0和1之间进行调节的;而大家都认为,这个话题不能一概而论,...
  • u010159842
  • u010159842
  • 2017-08-15 14:40
  • 626

利用图算法实现金融行业风控

摘要: 本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。 (...
  • zhoutaotao123
  • zhoutaotao123
  • 2017-02-13 16:25
  • 1120
    我的微信公众号

    作者公众号:凡人机器学习

    凡人机器学习

    机器学习微信交流群
    为了方便大家学习与交流,凡人云近日已开通机器学习社群! 分享“凡人机器学习”公众号名片到40人以上的大群并截图给小助手,小助手就会拉你入群 在这里你可以得到: 1.各种学术讨论 2.最新的资料分享 3.不定期的征文以及联谊活动! 小助手微信号:meiwznn
    作者新书《机器学习实践应用》

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    个人资料
    • 访问:839188次
    • 积分:11218
    • 等级:
    • 排名:第1692名
    • 原创:235篇
    • 转载:40篇
    • 译文:0篇
    • 评论:460条
    博客专栏
    统计