关闭

[置顶] 【机器学习PAI实践六】金融贷款发放预测

标签: 机器学习
3181人阅读 评论(0) 收藏 举报
分类:

一、背景

很多农民因为缺乏资金,在每年耕种前会向相关机构申请贷款来购买种地需要的物资,等丰收之后偿还。农业贷款发放问题是一个典型的数据挖掘问题。贷款发放人通过往年的数据,包括贷款人的年收入、种植的作物种类、历史借贷信息等特征来构建经验模型,通过这个模型来预测受贷人的还款能力。
本文借助真实的农业贷款业务场景,利用回归算法解决贷款发放业务。 线性回归,是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。本文通过农业贷款的历史发放情况,预测是否给预测集的用户发放他们需要的金额的贷款。

二、数据集介绍

具体字段如下:

字段名 含义 类型 描述
id 数据唯一标识符 string
name 用户名 string
region 用户所属地区 string 从北到南排列
farmsize 拥有土地大小 double 土地面积
rainfall 降雨量 double 降雨量
landquality 土地质量 double 土地质量数值越大越好
farmincome 收入 double 年收入
maincrop 种植作物 string 种植作物的种类
claimtype 贷款类型 string 两种
claimvalue 贷款金额 double 贷款金额

数据截图:

三、数据探索流程

首先,实验流程图:

1.数据源

数据的输入有两部分,贷款训练集用来进行回归模型的训练,共二百条数据,是历史贷款数据,包括一些farmsize、rainfall等特征,claimvalue是贷款收回的金额。贷款预测集是今年申请贷款者,claimvalue是农民申请的贷款金额,共71人。我们通过已有的二百多条历史数据,预测给七十一人中的哪些申请贷款人发放贷款。

2.特征工程

将一些字符串类型的数据,根据他们的含义映射成数字。比如说region字段,我们将其中的north、middle、south按照从北到南的顺序分别映射成0、1、2。然后通过类型转换将字段转换成double类型,这样就可以进行下面的回归计算了。

如下图:

3.回归及预测

线性回归组件对于历史数据训练并生成回归模型,在预测组件中利用回归模型对于预测集数据进行了预测。通过合并列组件将用户ID、预测值、申请的贷款值合并。预测值表示的是用户的还贷能力(预期可以归还的金额)。

4.回归模型评估

通过回归模型评估组件对于回归模型进行评估。

5.发放贷款人

通过过滤与映射组件筛选出可以获得贷款的人,这里的业务逻辑是针对每个客户,如果他被预测得到的还款能力大于他申请贷款的金额,就对他发放贷款。

四、其它

关注作者微信公众号:

参与讨论:云栖社区公众号

免费体验:阿里云数加机器学习平台

0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

Kaggle债务违约预测冠军经验分享

版权声明:本文为博主原创文章,未经博主允许不得转载。 目录(?)[-] 引言SWOT分析法 优势Strengths利用我们已有的优势弱势weaknesses我们需要提升的领域机会opportunities可以利用的机会及实践得到的经验威胁threats我们需要减轻和控制...
  • zhangf666
  • zhangf666
  • 2016-12-27 16:05
  • 1666

Loan default predictor(贷款违约预测)

Loan default predictor  (贷款违约预测) --- dylan at  2014-3-16   一:背景 Kaggle发布了一个涉及贷款违约预测的比赛,时间周期2个月(2014/01/17 ...
  • hero_fantao
  • hero_fantao
  • 2014-06-25 21:36
  • 2609

Data_analysis(一)Kaggle上对StandarBank推荐产品的NAN数据进行fill

Kaggle上的一个比赛,https://www.kaggle.com/c/santander-product-recommendation 下面是一位大兄弟写的kernel,对数据进行清洗和nan填充 https://www.kaggle.com/apryor6/santander-prod...
  • JR_lu
  • JR_lu
  • 2016-11-07 21:51
  • 438

机器学习系列(18)_Kaggle债务违约预测冠军经验分享

债务违约预测是Kaggle中的一个比赛,本文将介绍取得第一名成绩的方法,本次比赛的目标包括两个方面。其一是建立一个模型,债务人可以通过它来更好地进行财务方面的决策。其二是债权人可以预测这个债务人何时会陷入到财务方面的困境。最终目的是,通过预测未来两年内债务违约的概率,来改进现有的信用评分制度。这是一...
  • yaoqiang2011
  • yaoqiang2011
  • 2016-10-11 15:54
  • 21068

【python】Logistics模型预测银行贷款违约

Logistics模型预测贷款违约          logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。 Logistics回归模型中因变量只有1-0,两种取值。 模...
  • huozi07
  • huozi07
  • 2016-01-03 15:18
  • 2626

机器学习之线性回归预测销量

背景:给出广告在TV,Radio,Newspaper的销售额,利用线性回归预测其以后的销量趋势 数据:   TV Radio Newspaper Sales 1 230.1 37.8 69.2 22.1 2 44.5 39.3 45.1 10.4 3 17.2 45....
  • y1535766478
  • y1535766478
  • 2017-08-03 20:15
  • 991

【机器学习PAI实践一】搭建心脏病预测案例

产品地址:https://data.aliyun.com/product/learn?spm=a21gt.99266.416540.102.OwEfx2一、背景心脏病是人类健康的头号杀手。全世界1/3的人口死亡是因心脏病引起的,而我国,每年有几十万人死于心脏病。 所以,如果可以通过提取人体相关的体侧...
  • gshengod
  • gshengod
  • 2016-12-13 15:06
  • 2932

《机器学习实战》预测数值型数据-回归(Regression)

本文转载自:http://blog.csdn.net/gamer_gyt/article/details/51405251 1:用线性回归找到最佳拟合曲线             回归的目的是预测数值型的目标值。最直接的办...
  • chivalrousli
  • chivalrousli
  • 2016-09-08 19:34
  • 3097

《机器学习实战》预测数值型数据-回归(Regression)

回归的一般方法: (1)收集数据:采用任意方法收集数据 (2)准备数据:回归需要数值型数据,标称型数据将被转化成二值型数据 (3)分析数据:绘出数据的可视化二维图将有助于对数据做出理解和分析,在采用缩减法求得新回归系数之后,可以将新拟合线在图上作为对比 (4)训练算法:求得回归系数 (5)测试算法:...
  • Gamer_gyt
  • Gamer_gyt
  • 2016-05-14 18:33
  • 7650

机器学习 - 线性模型

一.线性回归—LR 线性回归是一种监督学习下的线性模型,线性回归试图从给定数据集中学习一个线性模型来较好的预测输出(可视为:新来一个不属于D的数据,我们只知道他的x,要求预测y,D如下表示)。 首先我们还是给定数据集的严格表示(我们这里直接讲多维的线性回归): 即是线性模型,那么我们容易给出目标函...
  • ZK_J1994
  • ZK_J1994
  • 2016-12-12 11:13
  • 1341
    我的微信公众号

    作者公众号:凡人机器学习

    凡人机器学习

    机器学习微信交流群
    为了方便大家学习与交流,凡人云近日已开通机器学习社群! 分享“凡人机器学习”公众号名片到40人以上的大群并截图给小助手,小助手就会拉你入群 在这里你可以得到: 1.各种学术讨论 2.最新的资料分享 3.不定期的征文以及联谊活动! 小助手微信号:meiwznn
    作者新书《机器学习实践应用》

    主要讲述算法和业务的结合,适合初学者

    机器学习实践应用

    京东地址

    个人资料
    • 访问:816594次
    • 积分:10972
    • 等级:
    • 排名:第1711名
    • 原创:232篇
    • 转载:40篇
    • 译文:0篇
    • 评论:459条
    博客专栏
    统计