关闭

最长回文子串

标签: 动态规划C++
153人阅读 评论(0) 收藏 举报
分类:

简单来说,就是顺着和逆着读相同的子串;例如erabcba的最长回文串是abcba

方法一:
动态转移方程:P[i][j]记录i—j是否为回文串(true false),P[i][j]=P[i-1][j-1](if a[i]==a[j]);
枚举子串的长度l,通过对每个字符开始l长的子串判断是否为回文串;
同时注意单个字符的回文串是;且若相邻两个字符相同,则这两个字符的回文串是2;以上两种情况要单独在初始化的时候考虑。
输出回文串,要用max去记住当前最长的回文串长度,start记住最长回文串的起始位置;

int huiwen1(string a)
//动态规划算法,枚举的是长度从小到大;动态转移方程:(P[i][j]=0如果ij不是回文串)P[i+1][j-1]=1且a[i]=a[j]则P[i][j]=P[i+1][j-1]
//时间复杂度O(N^2),空间复杂度O(N^2)
{
    int len = a.length();
    int start = 0;//记最长子串的起始坐标为start
    int P[10][10] = { false }; //P记录以i开始j结尾的子串是不是回文串
    int max = 0;//记录最长的回文串长度
    //要考虑一个字母是自己的回文,两个字符相等的话回文长度为2;故长度=1、2的子串要单独讨论
    for (int i = 0; i < len; i++)
    {
        P[i][i] = true;
        max = 1;
    }
    for (int i = 1; i < len; i++)
    {
        if (a[i] == a[i - 1])
        {
            P[i - 1][i] = true;
            max = 2;
            start = i - 1;
        }
    }
    //从长度为3的子串开始遍历
    for (int l = 3; l <= len; l++)//考虑长度为l的子串
    {
        for (int i = 0; i <= len - l; i++)
        //为了保证ij<len,则要保证i<=(len-1)
        {
            int j = i + l - 1;//开始坐标为i,结束坐标为j的子串
            if ((a[i] == a[j]) && (P[i+1][j-1] == true))
            {
                P[i][j] = true;
//此时子串的长度就是l,所以P不用计入长度,简单的可以用true和false表示
                if (max == l)
                    start = i;
            }
        }
    }
    for (int t = start; t < start + max; t++)
        cout << a[t] << " ";
    cout << endl;
    cout << "最长子串长度:" << max << endl;
    return max;
}

方法二:中心扩展——枚举的是字符串的中心,不断的往两边扩展比较,只需要用max来记住当前最长的回文串长度。

int huiwen2(string a)//中心扩展法,枚举的是每一个坐标,算以这个坐标为中心能向两边扩展的最大长度
//时间复杂度O(N^2) 空间复杂度O(1)
{
    //要考虑奇偶的情况,如aba与abba
    int start = 0;
    int max = 1;
    for (int i = 0; i < a.length(); i++)
    {
        //奇数情况
        int l = i - 1; int r = i + 1;
        while ((l >= 0) && (r < a.length()) && (a[l] == a[r]))//如果以i为中心前后相等构成回文串
        {
            max = ((r - l + 1)>max ? (r - l + 1) : max);
            if (max == (r - l + 1))
                start = l;
            l--; r++;
        }
        //偶数情况
        l = i; r = i + 1;//考虑连续两个相同字符的情况
        while ((l >= 0) && (r < a.length()) && (a[l] == a[r]))
        {
            max = ((r - l + 1)>max ? (r - l + 1) : max);
            if (max == (r - l + 1))
                start = l;
            l--; r++;
        }
    }
    for (int t = start; t < start + max; t++)
        cout << a[t] << " ";
    cout << endl;
    cout << "最长回文子串长度:" << max << endl;
    return max;
}

方法三:Manchester
参考:http://blog.csdn.net/yzl_rex/article/details/7908259

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1011次
    • 积分:77
    • 等级:
    • 排名:千里之外
    • 原创:7篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章存档