R训练Random Forest并转pmml

原创 2017年07月03日 15:55:12

PMML

关于pmml 请查看博客:

http://blog.csdn.net/c1481118216/article/details/78411200

源码

github: https://github.com/liaotuo/R_RandomForest_pmml.git

R训练Random Forest

本次实例中,使用R 语言自带的数据集 iris 训练一个Random Forest模型,数据集将被分为两个样本(70%训练集,30%测试集)
R 语言脚本如下:

需要安装randomForest包: install.packages(“randomForest”)

# load library and data
library(randomForest)
data(iris)

# load data and divide(划分) into training set and sampling(训练集和测试集)
# 将数据分为两部分 70%训练集 30%测试集
ind <- sample(2,nrow(iris),replace=TRUE,prob=c(0.7,0.3))
trainData <- iris[ind==1,]
testData <- iris[ind==2,]

# train model
iris_rf <- randomForest(Species~.,data=trainData,ntree=100,proximity=TRUE)
table(predict(iris_rf),trainData$Species)

# visualize the model
print(iris_rf)
attributes(iris_rf)
plot(iris_rf)

模型转pmml保存

上面的代码我们生成了一个randomForest模型,现在需要把模型转换成PMML,需要用到的包有:XML PMML 需要提前安装,命令如下:

xml:install.packages(“XML”)
pmml: install.packages(“pmml”,dependencies=TRUE)
接下来执行脚本:

# convert model to pmml
iris_rf.pmml <- pmml(iris_rf,name="Iris Random Forest",data=iris_rf)

# save to file "iris_rf.pmml" in disk 路径自定义
saveXML(iris_rf.pmml,"D://iris_rf.pmml")

然后生成了一个pmml文件。
这里写图片描述

这样我们就成功转换成PMMl文件了

版权声明:欢迎转载,请注明原文地址:http://blog.csdn.net/c1481118216

将python或R生成的模型存为PMML供java调用

查看jpmml的说明文档:https://github.com/jpmml/jpmml-evaluator 其它参考资料 1、XGBoost模型文件转化为PMML 2、JPMML Example ...
  • u010035907
  • u010035907
  • 2017年05月27日 10:33
  • 3865

PMML模型文件在机器学习的实践经验

算法工程师和业务开发工程师,所掌握的技能容易在长期的工作中出现比较深的鸿沟,算法工程师辛辛苦苦调参的成果,业务工程师可能不清楚如何使用,如何为线上决策给予支持。本文介绍一种基于PMML的模型上线方法。...
  • hopeztm
  • hopeztm
  • 2017年10月23日 18:33
  • 1817

XGBoost模型文件转化为PMML

运用java包和指令行讲XGBoost模型转化为PMML通用模型文件。 前期准备 下载jpmml-xgboost, https://github.com/jpmml/jpmml-xgboost/...
  • Sinsa110
  • Sinsa110
  • 2016年08月13日 22:54
  • 4881

机器学习算法线上部署方法

本文由携程技术中心投递,ID:ctriptech。作者:潘鹏举,携程酒店研发BI经理,负责酒店服务相关的业务建模工作,主要研究方向是用机器学习实现业务流程自动化、系统智能化、效率最优化,专注于算法实践...
  • u012294181
  • u012294181
  • 2017年01月15日 20:25
  • 3204

PMML(一):初探

1.简介 PMML全称预言模型标记语言(Predictive Model Markup Language),利用XML描述和存储数据挖掘模型,是一个已经被W3C所接受的标准。MML是一种基于XM...
  • litaoshoujiao
  • litaoshoujiao
  • 2013年01月23日 23:46
  • 7685

Spark加载PMML进行预测

软件版本:CDH:5.8.0 , CDH-hadoop :2.6.0 ; CDH-spark :1.6.0 目标:使用Spark 加载PMML文件到模型,并使用Spark平台进行预测(这里测试使用的是...
  • fansy1990
  • fansy1990
  • 2016年11月25日 22:28
  • 5992

将sklearn生成的决策树进行图形化展示

1,工具和平台: python2.7 windows 2,决策树的可视化展示据我所知有两种途径:一是将生成的结果导出为pmml文件,工具包为sklearn2pmml等,具体可见https://gi...
  • u010736419
  • u010736419
  • 2017年06月22日 11:42
  • 3293

使用sklearn优雅地进行数据挖掘

作者:jasonfreak   1 使用sklearn进行数据挖掘   1.1 数据挖掘的步骤   数据挖掘通常包括数据采集,数据分析,特征工程,训练模型,模型评估等步骤。使用sklearn工具...
  • GoodShot
  • GoodShot
  • 2017年03月06日 20:46
  • 561

R —— Random Forest

1. 基本思想         用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树...
  • F_yuqi
  • F_yuqi
  • 2017年01月05日 17:21
  • 2389

Weka生成和加载PMML文件

网络上太多示例展示了Weka怎么样调用数据分类算法,但想想我如何针对一个训练好的分类模型进行重用呢。所以必须要“导出来”。导出模型,一个标准的方式就是用PMML了。...
  • hanphy
  • hanphy
  • 2016年07月13日 19:22
  • 1507
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:R训练Random Forest并转pmml
举报原因:
原因补充:

(最多只允许输入30个字)