关闭

1099. Build A Binary Search Tree

158人阅读 评论(0) 收藏 举报
分类:

1099. Build A Binary Search Tree (30)

时间限制
100 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

    Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

    Output Specification:

    For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

    Sample Input:
    9
    1 6
    2 3
    -1 -1
    -1 4
    5 -1
    -1 -1
    7 -1
    -1 8
    -1 -1
    73 45 11 58 82 25 67 38 42
    
    Sample Output:

    58 25 82 11 38 67 45 73 42

  • #include<iostream>
    #include<stdio.h>
    #include<vector>
    #include<queue>
    #include<algorithm>
    using namespace std;
    
    struct Node
    {
    	int value;
    	int lchild;
    	int rchild;
    	int lchild_num;
    	int rchild_num;
    	
    	Node(int v, int l, int r):value(v), lchild(l), rchild(r), lchild_num(0), rchild_num(0){}
    	Node():lchild_num(0), rchild_num(0){}
    	
    }buf[101];
    
    vector<int> v;
    
    //确定各个节点左右孩子的个数 
    int countChild(Node* bt)
    {
    	if(bt->lchild != -1)
    		bt->lchild_num = countChild(&buf[bt->lchild]);
    	else
    		bt->lchild_num = 0;
    	
    	if(bt->rchild != -1)
    		bt->rchild_num = countChild(&buf[bt->rchild]);
    	
    	return bt->lchild_num + bt->rchild_num + 1;
    }
    
    //递归建树 
    void build(Node* bt, int num[])
    {
    	bt->value = num[bt->lchild_num];
    	if(bt->lchild_num > 0)
    		build(&buf[bt->lchild], num);
    	if(bt->rchild_num > 0)
    		build(&buf[bt->rchild], num+bt->lchild_num+1);
    }
    
    void levelOrder(Node* bt)
    {
    	queue<Node*> que;
    	que.push(bt);
    		
    	while(!que.empty())
    	{
    		Node* p = que.front();
    		v.push_back(p->value);
    		que.pop();
    		
    		if(p->lchild != -1)
    			que.push(&buf[p->lchild]);
    		if(p->rchild != -1)
    			que.push(&buf[p->rchild]);
    	}
    }
    
    void print()
    {
    	for(int i = 0; i < v.size(); i ++)
    	{
    		if(i)
    			printf(" %d", v[i]);
    		else
    			printf("%d", v[i]);
    	}
    	printf("\n");
    }
    
    int main()
    {
    	freopen("F://Temp/input.txt", "r", stdin);
    	int n;
    	int num[101];
    	cin>>n;
    	
    	for(int i = 0; i < n; i ++)
    		cin>>buf[i].lchild>>buf[i].rchild;
    	
    	for(int i = 0; i < n; i ++)
    		cin>>num[i];
    
    	sort(num, num+n);
    	
    	countChild(buf);
    	build(buf,num);
    	levelOrder(buf);
    	print();
    	
    	return 0;
    }
    


  • 0
    0

    查看评论
    * 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
      个人资料
      • 访问:99320次
      • 积分:2668
      • 等级:
      • 排名:第13646名
      • 原创:174篇
      • 转载:13篇
      • 译文:0篇
      • 评论:6条
      最新评论