1007. Maximum Subsequence Sum

原创 2015年11月20日 15:52:36

1007. Maximum Subsequence Sum (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, Ni+1, ..., Nj } where 1 <= i <= j <= K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer K (<= 10000). The second line contains K numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices i and j (as shown by the sample case). If all the K numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:
10
-10 1 2 3 4 -5 -23 3 7 -21
Sample Output:
10 1 4
#include<stdio.h>
using namespace std;

int buf[10002];

int main()
{
	freopen("F://Temp/input.txt", "r", stdin);
	int n;
	scanf("%d", &n);

	for(int i = 0; i < n; i ++)
		scanf("%d", &buf[i]);
	
	bool neg_flag = true;//是否全部是负数
	for(int i = 0; i < n; i ++)
		if(buf[i] >= 0)
		{
			neg_flag = false;
			break;
		}
	
	if(neg_flag)
	{
		printf("0 %d %d\n", buf[0], buf[n-1]);
		return 0;
	}
	
	int start, end;
	int max = -1, tmp_sum = 0;
	for(int i = 0; i < n; i ++)
	{
		tmp_sum += buf[i];
		
		if(tmp_sum > max)
		{
			max = tmp_sum;
			end = i;
		}
		else if(tmp_sum < 0)
			tmp_sum = 0;
	}
	max = -1, tmp_sum = 0;
	for(int i = end; i >= 0; i --)
	{
		tmp_sum += buf[i];
		if(tmp_sum > max)
		{
			max = tmp_sum;
			start = i;
		}
	} 
	
	printf("%d %d %d\n", max, buf[start], buf[end]);
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

pat PAT (Advanced Level) Practise 1007. Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 ...

【PAT】1007. Maximum Subsequence Sum (25)

题目链接:http://pat.zju.edu.cn/contests/pat-a-practise/1007 分析: (1)求最大连续子序列,最终输出最大子序列值以及子序列起始和终止元素。如果数...

PAT 1007. Maximum Subsequence Sum (25)(dp动态规划)

题目1007. Maximum Subsequence Sum (25)时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作...

1007. Maximum Subsequence Sum (25)——PAT (Advanced Level) Practise

题目信息: 1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 32000 kB ...

1007. Maximum Subsequence Sum

原题: https://www.patest.cn/contests/pat-a-practise/1007 思路:题意是求最大连续子列和。有多种方法,可以用brute force,分而治之法, 最...

【PAT Advanced Level】1007. Maximum Subsequence Sum (25)

这题理解起来有点烦,如果用O(n^2)也可以做,当然是有O(n)的算法的,利用类似于贪心算法,从前往后遍历,每次都加上当前元素,如果小于0,则说明之前所有元素(包括当前元素)的最大子序列和小于0,我们...
  • gzxcyy
  • gzxcyy
  • 2013年10月14日 14:23
  • 828

PAT - 甲级 - 1007. Maximum Subsequence Sum (25)

Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

1007.Maximum Subsequence Sum

【题意】 求出给出的整数串中的最大和子串 【思路】 一个所求子串必然以非负整数开始,然后在右指针右移、不断地加上新数字的过程中要保证部分和非负,否则这个部分和就要舍弃,更新左指针。整个扫描过...

PAT (Advanced Level) Practise 1007 Maximum Subsequence Sum (25)

1007. Maximum Subsequence Sum (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 ...

PAT-1007. Maximum Subsequence Sum (25)

Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:1007. Maximum Subsequence Sum
举报原因:
原因补充:

(最多只允许输入30个字)